Skip to main content
Log in

Macroscopic Transport Large-scale advection, turbulent diffusion, wave transport

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

While the solar convection zone is very well mixed by its turbulent motions, chemical composition gradients build up in the radiative interior due to microscopic diffusion and settling, and to nuclear burning. Standard models, which ignore any type of macroscopic transport, cannot explain the depletion of lithium in solar-type stars, as they evolve; neither do they account for the observed profile of molecular weight at the base of the solar convection zone.

Such macroscopic transport can be achieved through thermally driven meridian currents, through turbulent diffusion generated by differential rotation and possibly through gravity waves. These processes transport also angular momentum, and therefore the internal rotation profile of the Sun provides a crucial test for their relative importance. So does also the behavior of tidally locked binaries, which appear to destroy less lithium than single stars of the same mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, S.: 1997, ‘Seismology of the base of the solar convection zone', Monthly Not. Roy. Astron. Soc. 288, 572.

    ADS  Google Scholar 

  • Brun, A.S., Turck-Chieze, S. and Zahn J.-P.: 1998, ‘Macroscopic processes in the solar interior', to appear in SOHO6/GONG98 Proc. Structure and Dynamics of the Interior of the Sun and Sun-like Stars.

  • Busse, F.H.: 1981, ‘Do Eddington-Sweet circulations exist?', Geophys. Astrophys. Fluid Dynamics 17, 215.

    MATH  ADS  Google Scholar 

  • Brown, T.M, Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O. and Morrow, C.A.: 1989, ‘Inferring the Sun's internal angular velocity from observed p-mode frequency splittings', Astrophys. J. 343, 526.

    Article  ADS  Google Scholar 

  • Chaboyer, B., and Zahn, J.-P.: 1992, ‘Effect of horizontal turbulent diffusion on transport by meridional circulation', Astron. Astrophys. 253, 143.

    ADS  Google Scholar 

  • Chaboyer, B., Demarque, P., Guenther, D.B. and Pinsonncault, M.H.: 1995, ‘Rotation, diffusion and overshoot in the Sun', Astrophys. J. 446, 435.

    Article  ADS  Google Scholar 

  • Charbonneau, P., and MacGregor, K.B.: 1993, ‘Angular momentum transport in magnetized stellar radiative zones. II. The solar spin-down', Astrophys. J. 417, 762.

    Article  ADS  Google Scholar 

  • Charbonneau, P., Christensen-Dalsgaard, J., Henning, A., Schou, J., and Thompson, M.J.: 1997, ‘Angular momentum transport in the Sun through meridian circulation', IAU Symposium 181/ (ed. J. Provost and F.X. Schmider). in press.

  • Christensen-Dalsgaard, J., Monteiro, M., and Thompson, M.J.: 1995, ‘Helioseismic estimation of convective overshoot in the Sun, Monthly Not. Roy. Astron. Soc. 276, 283.

    ADS  Google Scholar 

  • Corbard, T., Berthomieu, G., Provost, J., and Morel, P.: 1992 ‘Inferring the equatorial solar tachocline from frequency splittings', Astron. Astrophys. 330, 1149.

    ADS  Google Scholar 

  • Eddington, A.S.: 1925, ‘Circulating currents in rotating stars', Observatory 48, 73.

    ADS  Google Scholar 

  • Elliott, J.R.: 1997, ‘Aspects of the solar tachocline', Astron. Astrophys. 327, 1222.

    ADS  Google Scholar 

  • Elliott, J.R., Miesch, M.S., and Toomre, J.: 1998, ‘Rotating spherical shell convection', preprint.

  • Freytag, B., Ludwig, H.-G., and Steffen, M.: 1996, ‘Hydrodynamical models of stellar convection', Astron. Astrophys. 313, 497.

    ADS  Google Scholar 

  • Gough, D.: 1998, ‘Solar interior', Space Sci. Rev., this volume.

  • Howard, L.N., Moore, D.W., and Spiegel, E.A.: 1967, ‘Solar spin-down problem', Nature 214, 1297.

    Article  ADS  Google Scholar 

  • Hurlburt, N.E., Toomre, J., and Massaguer, J.: 1986, ‘Nonlinear compressible convection penetrating into stable layers and producing internal gravity waves', Astrophys. J. 311, 563.

    Article  ADS  Google Scholar 

  • Hurlburt, N.E., Toomre, J., Massaguer, J.M., and Zahn, J.-P.: 1994, ‘Penetration below a convection zone', Astrophys. J. 421, 245.

    Article  ADS  Google Scholar 

  • Julien, K., Werne, L., Legg, S., and McWilliams, J.: 1997, ‘The effect of rotation on convective overshoot', Solar Convection and Oscillations and their Relationship (F.P. Pijpers, J. Christensen-Dalsgaard and C.S. Rosenthal, eds.; Kluwer, Astrophysics and Space Science Library vol. 225), 231.

  • Kosovichev, A.G., and Duvail, T.L. Jr.: 1997, ‘Acoustic tomography of solar convective flows and structures', Solar Convection and Oscillations and their Relationship (F.P. Pijpers, J. Christensen-Dalsgaard and C.S. Rosenthal, eds.; Kluwer, Astrophysics and Space Science Library vol. 225), 241.

  • Kumar, P., and Quataert, E.J.: 1997, ‘Angular momentum transport by gravity waves and its effect on the rotation of the solar interior', Astrophys. J. 475, L143.

    Article  ADS  Google Scholar 

  • Lesieur, M.: 1997 Turbulence in Fluids (3d edition; Kluwer Acad. Publ.)

  • Malagoli, A., Cattaneo, F., and Brummel, N.H.: 1990, ‘Turbulent supersonic convection in three dimensions', Astrophys. J. 361, L33.

    Article  ADS  Google Scholar 

  • Matias, J., and Zahn, J.-P.: 1997, ‘Angular momentum transport in the Sun through meridian circulation', IAU Symposium 181 (ed. J. Provost and F.X. Schmider), in press.

  • Mestel, L.: 1953, ‘Rotation and stellar evolution', Monthly Not. Roy. Astron. Soc. 113, 716.

    MATH  ADS  Google Scholar 

  • Michaud, G., and Zahn, J.-P.: 1998, ‘Turbulent transport in stellar interiors', Theor. Comput. Fluid Dynamics, in press.

  • Pinsonneault, M.H., Kawaler, S.D., Sofia, S. and Demarque, P.: 1989, ‘Evolutionary models of the rotating Sun', Astrophys. J. 338, 424.

    Article  ADS  Google Scholar 

  • Press, W.H.: 1981, ‘Radiative and other effects from internal waves in stellar interiors', Astrophys. J. 245, 286.

    Article  MathSciNet  ADS  Google Scholar 

  • Richard, O., Vauclair, S., Charbonncl, C. and Dziembowski, W.A.: 1996, ‘New solar models including helioseismological constraints and light-element depletion', Astron. Astrophys. 312, 1000.

    ADS  Google Scholar 

  • Rieutord, M., and Zahn, J.-P.: 1995, ‘Turbulent plumes in stellar convective envelopes', Astron. Astrophys. 296, 127.

    ADS  Google Scholar 

  • Roxburgh, I.W., and Vorontsov, S.V.: 1994, ‘Seismology of the solar envelope: the base of the convection zone as seen in the phase shift of acoustic waves', Mon. Not. Roy. Astron. Soc. 268, 880.

    ADS  Google Scholar 

  • Saslaw, W.C., and Schwarzschild, M.: 1965, ‘The overshoot region at the bottom of the solar convection zone', Astrophys. J. 142, 1468.

    Article  ADS  Google Scholar 

  • Schatzman, E.: 1962, ‘A theory for the role of magnetic activity during star formation', Ann. Astrophys. 25, 18.

    ADS  Google Scholar 

  • Schatzman, E.: 1993, ‘Transport of angular momentum and diffusion by the action of internal waves', Astron. Astrophys. 279, 431.

    ADS  Google Scholar 

  • Schatzman, E.: 1996, ‘Diffusion process produced by random internal waves', J. Fluid Mech. 322, 355.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Schmitt, J.H.M.M., Rosner, R., and Bohn, H.U.: 1984, ‘The overshoot region at the bottom of the solar convection zone', Astrophys. J. 282, 316.

    Article  ADS  Google Scholar 

  • Shaviv, G., and Salpeter, E.: 1973, ‘Convective overshooting in stellar interior models', Astrophys. J. 184, 191.

    Article  ADS  Google Scholar 

  • Skumanich, A.: 1972, ‘Time scales for Call emission decay, rotational braking and lithium depletion', Astrophys. J. 171, 563.

    Article  ADS  Google Scholar 

  • Spiegel, E.A., and Zahn, J.-P.: 1992, ‘The solar tachocline', Astron. Astrophys. 265, 106.

    ADS  Google Scholar 

  • Stein, R.F., and Nordlund, A.: 1989, ‘Topology of convection beneath the solar surface', Astrophys. J. 342, L95.

    Article  ADS  Google Scholar 

  • Sweet, P.A.: 1950, ‘The importance of rotation in stellar evolution', Monthly Not. Roy. Astron. Soc. 110, 548.

    MATH  MathSciNet  ADS  Google Scholar 

  • Talon, S. and Zalm, J.-P.: 1996, ‘Anisotropic diffusion and shear instabilities', Astron. Astrophys. 317, 749.

    ADS  Google Scholar 

  • Thompson, M.J., Toomre, J., Anderson, E.R., Antia, H.M., Berthomieu, G., Burtonclay, D., Chitre, S.M., Christensen-Dalsgaard, J., Corbard, T., DeRosa, M., Genovese, C.R., Gough, D.O., Haber, D.A., Harvey, J.W., Hill, F., Howe, R., Korzennik, S.G., Kosovichev, A.G., Leibacher, J.W., Pijpers, F.P., Provost, J., Rhodes Jr., E.J., Schou, J., Sekii, T., Stark, P.B., and Wilson, P.R.: 1996, ‘Differential rotation and dynamics of the solar interior', Science 272, 1300.

    ADS  Google Scholar 

  • Thorburn, J.A., Hobbs, L.M., Deliyannis, C.P. and Pinsonneault, M.H.: 1993, ‘Lithium in the Hyades. I — New observations', Astrophys. J. 415, 150.

    Article  ADS  Google Scholar 

  • Toomre, J., Zahn, J.-P., Latour, J. and Spiegel, E.A.: 1976, ‘Stellar convection theory. II. Single mode study of the second convection zone in an A type star.’ Astrophys. J. 207, 545.

    Article  MathSciNet  ADS  Google Scholar 

  • Vauciair, S.: 1998, ‘Element settling in the solar interior', Space Sci. Rev., this volume.

  • Vogt, H.: 1925, ‘Zum Strahlungsgleichgewicht der Sterne', Astron. Nachr. 223, 229.

    MATH  ADS  Google Scholar 

  • Watson, M.: 1981, ‘Shear instability of differential rotation in stars', Geophys. Astroph. Fluid Dyn. 16, 285.

    MATH  ADS  Google Scholar 

  • Zahn J.-P.: 1974, ‘Rotational instabilities and stellar evolution.’ Stellar Instability and Evolution (ed. P. Ledoux, A. Noels and R.W. Rogers; Reidel), 185.

  • Zahn J.-P.: 1991, ‘Convective penetration in stellar interiors', Astron. Astrophys. 252, 179.

    ADS  Google Scholar 

  • Zahn J.-P.: 1992, ‘Circulation and turbulence in rotating stars', Astron. Astrophys. 265, 115.

    ADS  Google Scholar 

  • Zahn, J.-P.: 1994, ‘Rotation and lithium depletion in late-type binaries', Astron. Astrophys. 288, 829.

    ADS  Google Scholar 

  • Zahn, J.-P., Talon, S. and Matias, J.: 1997, ‘Angular momentum transport by internal waves in the solar interior', Astron. Astrophys. 322, 320.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahn, JP. Macroscopic Transport Large-scale advection, turbulent diffusion, wave transport. Space Science Reviews 85, 79–90 (1998). https://doi.org/10.1023/A:1005188719729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005188719729

Navigation