Skip to main content
Log in

Magnetospheric Processes Leading to Precipitation

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Important causes of the precipitation of magnetospheric particles into the ionosphere are reviewed, and critical areas where further study is needed are identified. This review begins with a description of the precipitation that occurs within the region of open, polar-cap magnetic field lines. Precipitation of polar rain, cusp/mantle, and energetic solar particles is described as a result of the direct entry into the magnetosphere of particles that cross the magnetopause along open field lines. An extended region of soft electron precipitation is also often observed poleward of the plasma sheet; however the extent to which this region is within the region of open polar-cap field lines has not yet been definitively ascertained. Next the precipitation of plasma sheet particles by current sheet scattering is considered. It is shown that current sheet scattering can account for the ion precipitation that occurs throughout most of the plasma sheet along field lines that cross the equatorial plane on the nightside. Such scattering also accounts for electron precipitation that occurs in a narrow region adjacent to the poleward boundary of the plasma sheet. However, electron precipitation, as well as ion precipitation, occurs throughout most of the plasma sheet. The electron precipitation away from the poleward boundary of the plasma sheet appears to be predominantly the result of scattering by wave-particle interactions; however the responsible distribution of waves has yet to be identified. Finally, the precipitation of energetic radiation belt electrons and ions by Coulomb collisions, charge exchange, and wave particle interactions is briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashour-Abdalla, M., Berchem, J. P., Büchner, J., and Zelenyi, L. M.: 1993, 'Shaping of the magnetotail from the mantle: Global and local structuring,' J. Geophys. Res. 98, 5651.

    Google Scholar 

  • Belmont, G., Fontaine, D., and Canu, P.: 1983, 'Are equatorial electron cyclotron waves responsible for diffuse auroral electron precipitation?', J. Geophys. Res. 88, 9163.

    Google Scholar 

  • Blake, J. B., Looper, M. P., Baker, D. N., Nakanura, R., Klecker, B., and Hovestadt, D.: 1996, 'New high temporal and spatial resolution measurements of the precipitation of relativistic electrons', Adv. Space. Res. 18,(8) 171.

    Google Scholar 

  • Büchner, J. and Zelenyi, L. M.: 1989, 'Regular and chaotic charged particle motion in magnetotail-like field reversals 1. Basic theory of trapped motion,' J. Geophys. Res. 94,11, 821.

    Google Scholar 

  • Burch, J. L.: 1968, 'Low-energy electron fluxes above the auroral zone', J. Geophys. Res. 73, 3585.

    Google Scholar 

  • Chen, M. W., Lyons, L. R., and Schulz, M.: 1994, 'Simulation of phase space distributions of storm time proton ring current', J. Geophys. Res. 99, 5745.

    Google Scholar 

  • Cornwall, J. M.: 1972, 'Radial diffusion of ionized helium and protons: A probe for magnetospheric dynamics,' J. Geophys. Res. 77, 1756.

    Google Scholar 

  • Cornwall, J. M., Coroniti, F. V., and Thorne, R. M.: 1970, 'Turbulent loss of ring current protons,' J. Geophys. Res. 75, 4699.

    Google Scholar 

  • Cowley, S. W. H.: 1980, 'Plasma populations in a simple open model magnetosphere,' Space Science Reviews 26, 217.

    Google Scholar 

  • Eather, R. H.: 1969, 'Latitudinal distribution of auroral and airglow emissions: The "soft' zone,' J. Geophys. Res. 74, 153.

    Google Scholar 

  • Eather, R. H. and Mende, S. B.: 1972, in K. Folkestad, (ed.), 'High latitude particle precipitation and source regions in the magnetosphere,' Magnetosphere-Ionosphere Interactions, Universitetsforlaget, Oslo, pp. 139.

    Google Scholar 

  • Feldstein, Y. I., and Galperin, Y. I.: 1985, 'The auroral luminosity structure in the high-latitude upper atmosphere: Its dynamics and relationship to the large-scale structure of the Earth's magnetosphere,' Rev. Geophys. 23, 217.

    Google Scholar 

  • Fennell, J. F., Mizera, P. F., and Croley, D. R.: 1975, 'Low energy polar cap electrons during quiet times,' Proc. Int. Conf. Cosmic Rays 14 MG8-3, 1267.

    Google Scholar 

  • Fok, M.-C., Kozyra, J. U., Nagy, A. F., and Cravens, T. E.: 1991, 'Lifetime of ring current particles due to Coulomb collisions in the plasmasphere,' J. Geophys. Res. 96, 7861.

    Google Scholar 

  • Fok, M.-C., Kozyra, J. U., Nagy, A. F., Rasmussen, C. E., and Khavanov, G. C.: 1993, 'Decay of equatorial ring current ions and associated aeronomical consequences,' J. Geophys. Res. 98, 19,381.

    Google Scholar 

  • Fritz, T. A.: 1968, 'High-latitude outer-zone boundary region for > 40-keV electons during geomagnetically quiet periods,' J. Geophys. Res. 73, 7245.

    Google Scholar 

  • Fritz, T. A.: 1970, 'Study of the high-latitude, outer-zone boundary region for > 40-keV electrons with satellite Injun 3,' J. Geophys. Res. 75, 5387.

    Google Scholar 

  • Galperin, Y. I., and Feldstein, Y. I.: 1991, in C.-I. Meng, M. J. Rycroft, and L. A. Frank, (eds.), 'Auroral luminosity and its relationship to magnetospheric plasma domains,' Auroral Physics, Cambridge University Press, Cambridge, pp. 207–222.

    Google Scholar 

  • Hardy, D. A., Burke, W. J., and Gussenhoven, M. S.: 1982, 'DMSP optical and electron measurements in the vicinity of polar cap ares,' J. Geophys. Res. 87, 2413.

    Google Scholar 

  • Hovestadt, D., Häusler, B., and Scholer, M.: 1972, 'Observations of energetic particles at very low altitude near the geomagnetic equator,' Phys. Rev. Lett. 28, 134.

    Google Scholar 

  • Hultqvist, B.: 1959, 'On the interpretation of ionization in the lower ionosphere occurring on both day and nightside of the earth within a few hours after some solar flares,' Tellus 11, 332.

    Google Scholar 

  • Hultqvist, B., Aparicio, B., Borg, H., Arnoldy, R., and Moore, T. E.: 1981, 'Decrease of keV electron and ion fluxes in the dayside magnetosphere during the early phase of magnetospheric disturbances,' Planet. Space Sci. 29, 107.

    Google Scholar 

  • Jordanova, V. K., Kozyra, J. U., and Nagy, A. F.: 1996, 'Effects of heavy ions on the quasi-linear diffusion coefficients from resonant interactions with electromagnetic ion cyclotron waves,' J. Geophys. Res. 101, 19,771.

    Google Scholar 

  • Kennel, C. F., Scarf, F. L., Fredricks, R. W., McGehee, J. H., and Coroniti, F. V.: 1970, 'VLF electric field observations in the magnetosphere,' J. Geophys. Res. 75, 6136.

    Google Scholar 

  • Levasseur, A. C. and Blamont, J. E.: 1973, 'Satellite observations of strong Balmer alpha atmospheric emissions around the magnetic equator,' J. Geophys. Res. 78, 3881.

    Google Scholar 

  • Lyons, L. R.: 1974, 'Electron diffusion driven by magnetospheric electrostatic waves,' J. Geophys. Res. 79, 575.

    Google Scholar 

  • Lyons, L. R.: 1984, 'Electron energization in the geomagnetic tail current sheet,' J. Geophys. Res. 89, 5479.

    Google Scholar 

  • Lyons, L. R.: 1992, 'Formation of auroral ares via magnetosphere-ionosphere coupling,' Rev. Geophys. 30, 93.

    Google Scholar 

  • Lyons, L. R. and Evans, D. S.: 1984, 'An association between discrete aurora and energetic particle boundaries,' J. Geophys. Res. 89, 2395.

    Google Scholar 

  • Lyons, L. R. and Richmond, A. D.: 1978, 'Low-latitude E region ionization by energetic ring current particles,' J. Geophys. Res. 83, 2201.

    Google Scholar 

  • Lyons, L. R. and Thome, R. M.: 1973, 'Equilibrium structure of radiation belt electrons,' J. Geophys. Res. 78, 2142.

    Google Scholar 

  • Lyons, L. R. and Speiser, T. W.: 1982, 'Evidence for current-sheet acceleration in the geomagnetic tail,' J. Geophys. Res. 87, 2276.

    Google Scholar 

  • Lyons, L. R. and Williams, D. J.: 1975a, 'The quiet time structure of energetic (35–560 keV) radiation belt electrons,' J. Geophys. Res. 80, 943.

    Google Scholar 

  • Lyons, L. R. and Williams, D. J.: 1975b, 'The storm and post-storm evolution of energetic (35–560 keV) radiation belt electrons,' J. Geophys. Res. 80, 3985.

    Google Scholar 

  • Lyons, L. R. and Williams, D. J.: 1984, Quantitative Aspects of Magnetospheric Physics, D. Reidel Publ. Co., Dordrecht-Holland.

    Google Scholar 

  • Lyons, L. R., Schulz, M., Pridmore-Brown, D. C., and Roeder, J. L.: 1994, 'The low-latitude boundary layer near noon: An open-field line model,' J. Geophys. Res. 99, 17,367.

    Google Scholar 

  • Lyons, L. R., Lu, G., de la Beaujardière, O., and Rich, F. J.: 1996, 'Synoptic Maps of Polar Caps for Stable IMF Intervals during January 1992 GEM Campaign,' J. Geophys. Res. (in press).

  • Mizera, P. F. and Blake, J. B.: 1973, 'Observations of ring current protons at low altitudes,' J. Geophys. Res. 78, 1058.

    Google Scholar 

  • Moritz, J.: 1972, 'Energetic protons at low equatorial altitudes: A newly discovered radiation belt phenomena and its explanation,' J. Geophys. 38, 701.

    Google Scholar 

  • Nakada, N. P. and Mead, G. D.: 1965, 'Diffusion of protons on the outer radiation belt,' J. Geophys. Res. 70, 4777.

    Google Scholar 

  • Newell, P. T. and Meng, C.-I.: 1988, 'The cusp and the cleft/boundary layer: low-altitude identification and statistical local time variation,' J. Geophys. Res. 93, 14,549.

    Google Scholar 

  • Newell, P. T. and Meng, C.-I.: 1992, 'Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics,' Geophys. Res. Lett. 19, 609.

    Google Scholar 

  • Newell, P. T. and Meng, C.-I.: 1994, 'Comment on "Unexpected fentures of the ion precipitation in the so-called cleft/low-latitude boundary layer region: Association with sunward convection and occurrence on open field lines" by A. Nishida, T. Mukai, H. Hayakawa, A. Matsuoka, K. Tsuruda, N. Kaya, and H. Fukunishi,' J. Geophys. Res. 99, 19,609.

    Google Scholar 

  • Newell, P. T., Burke, W. J., Sanchez, E. R., Meng, C.-I., Greenspan, M. E., and Clauer, C. R.: 1991, 'The low-latitude boundary layer and the boundary plasma sheet at low-altitude: Prenoon precipitation regions and convection reversal boundaries,' J. Geophys. Res. 96, 21,013.

    Google Scholar 

  • Nishida, A. and Mukai, T.: 1994, 'Reply to Comment on "Unexpected features of the ion precipitation in the so-called cleft/low-latitude boundary layer region: Association with sunward convection and occurrence on open field lines" by A. Nishida et al.,' J. Geophys. Res. 99, 23,367.

    Google Scholar 

  • Nishida, A., Mukai, T., Hayakawa, H., Matsuoka, A., Tsuruda K., Kaya, N., and Fukunishi, H.: 1993, 'Unexpected features of the ion precipitation in the so-called cleft/low-latitude boundary layer region: Association with sunward convection and occurrence on open field lines,' J. Geophys. Res. 98, 11,161.

    Google Scholar 

  • O'Brien, B. J.: 1964, 'High-latitude geophysical studies with Injun 3, 3, Precipitation of electrons into the atmosphere,' J. Geophys. Res. 69, 13.

    Google Scholar 

  • Reid, G. C. and Leinbach, H.: 1959, 'Low-energy cosmic-ray events associated with solar flares,' J. Geophys. Res. 64, 1801.

    Google Scholar 

  • Reid, G. C. and Saner, H.: 1967, 'Evidence for non-uniformity of solar proton precipitation over the polar caps,' J. Geophys. Res. 72, 4383.

    Google Scholar 

  • Reiff, P. H., Hill, T. W., and Burch, J. L.: 1977, 'Solar wind plasma injection at the dayside magnetospheric cusp,' J. Geophys. Res. 82, 479.

    Google Scholar 

  • Rich, F. J., Hardy, D. A., Redus, R. H., and Gussenhoven, M. S.: 1990, 'Northward IMF and patterns of high-latitude precipitation and field-aligned currents: The February 1986 storm,' J. Geophys. Res. 95, 7893.

    Google Scholar 

  • Richmond, A. D.: 1992, 'Assimilative mapping of ionospheric electrodynamics,' Adv. Space Res. 6, 59.

    Google Scholar 

  • Roeder, J. L. and Koons, H. C.: 1989, 'A survey of electron cyclotron waves in the magnetosphere and the diffuse auroral electron precipitation,' J. Geophys. Res. 94, 2529.

    Google Scholar 

  • Rosenbauer, H., Grunwaidt, H., Montgomery, M. D., Paschmann, G., and Sckopke, N.: 1975, 'Heos 2 plasma observations in the distant polar magnetosphere: The plasma mantle,' J. Geophys. Res. 80, 2723.

    Google Scholar 

  • Scarf, F. L., Fredricks, R. W., Kennel, C. F., and Coroniti, F. V.: 1973, 'Satellite studies of magnetospheric substorms on August 15, 1968: OGO 5 plasma wave observations,' J. Geophys. Res. 78, 3119.

    Google Scholar 

  • Schulz, M. and Lanzerotti, L. J.: 1974, Particle Diffusion in the Radiation Belts, Springer-Verlag, New York.

    Google Scholar 

  • Sergeev, V. A. and Bösinger, T.: 1993, 'Particle dispersion at the nightside boundary of the polar cap,' J. Geophys. Res. 98, 233.

    Google Scholar 

  • Sergeev, V. A., Sazhina, E. M., Tsyganenko, N. A., Lundblad, J. A., and Soraas, F.: 1983, 'Pitchangle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere,' Planet. Space Sci. 31, 1147.

    Google Scholar 

  • Speiser, T. W.: 1965, 'Particle trajectories in model current sheets, 1, Analytical solutions,' J. Geophys. Res. 70, 4219.

    Google Scholar 

  • Spjeldvik, W. N.: 1977, 'Equilibrium structure of equatorially mirroring radiation belt protons,' J. Geophys. Res. 82, 2801.

    Google Scholar 

  • Spjeldvik, W. N. and Fritz, T. A.: 1978a, 'Energetic ionized helium in the quiet time radiation belts: Theory and comparison with observations,' J. Geophys. Res. 83, 654.

    Google Scholar 

  • Spjeldvik, W. N. and Fritz, T. A.: 1978b, 'Theory for charge states of energetic oxygen ions in the earth's radiation belts,' J. Geophys. Res. 83, 1583.

    Google Scholar 

  • Spjeldvik, W. N. and Thorne, R. M.: 1975, 'The cause of storm aftereffects in the middle latitude D-region,' J. Atmos. Terr. Phys., 37 777.

    Google Scholar 

  • Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. E.: 1973, 'Plasmaspheric hiss,' J. Geophys. Res. 78, 1581.

    Google Scholar 

  • West, H. I., Jr., Buck, R, M., and Kivelson, M. G.: 1978, 'On the configuration of the magnetotail near midnight during quiet and weakly disturbed periods: State of the magnetosphere,' J. Geophys. Res. 83, 3805.

    Google Scholar 

  • Van Allen, J. A., Fennell, J. F., and Ness, N. F.: 1971, 'Asymmetric access of energetic solar protons to the earth's north and south polar caps,' J. Geophys. Res. 76, 4262.

    Google Scholar 

  • West, H. I., Jr. and Vampola, A. L.: 1971, 'Simultaneous observations of solar-flare electron spectra in interplanetary space and within Earth's magnetosphere,' Phys. Rev. Lett. 26, 458.

    Google Scholar 

  • West, H. I., Jr., Buck, R. M., and Kivelson, M. G.: 1978, 'On the configuration of the magnetotail near midnight during quiet and weakly disturbed periods: State of the magnetosphere,' J. Geophys. Res. 83, 3805.

    Google Scholar 

  • Whalen, B. A. and McDiarmid, I. B.: 1973, 'Pitch angle diffusion of low-energy auroral electrons,' J. Geophys. Res. 78, 1608.

    Google Scholar 

  • Winningham, J. D. and Heikkila, W. J.: 1974, 'Polar cap electron fluxes observed with Isis 1,' J. Geophys. Res. 79, 949.

    Google Scholar 

  • Zelenyi, L. M., Kozrazhkin, R. A., and Bosqued, J. M.: 1990, 'Velocity-dispersed ion beams in the nightside auroral zone: AUREOL 3 observation,' J. Geophys. Res. 95, 12,119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, L. Magnetospheric Processes Leading to Precipitation. Space Science Reviews 80, 109–132 (1997). https://doi.org/10.1023/A:1004977704864

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004977704864

Keywords

Navigation