Skip to main content
Log in

Random Incidence Matrices: Moments of the Spectral Density

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study numerically and analytically the spectrum of incidence matrices of random labeled graphs on N vertices: any pair of vertices is connected by an edge with probability p. We give two algorithms to compute the moments of the eigenvalue distribution as explicit polynomials in N and p. For large N and fixed p the spectrum contains a large eigenvalue at Np and a semicircle of “small” eigenvalues. For large N and fixed average connectivity pN (dilute or sparse random matrices limit) we show that the spectrum always contains a discrete component. An anomaly in the spectrum near eigenvalue 0 for connectivity close to e is observed. We develop recursion relations to compute the moments as explicit polynomials in pN. Their growth is slow enough so that they determine the spectrum. The extension of our methods to the Laplacian matrix is given in Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Arnold, On the asymptotic distribution of the eigenvalues of random matrices, J. Math. Analysis and Appl. 20:262–268 (1967).

    Google Scholar 

  2. M. Bauer and O. Golinelli, On the kernel of tree incidence matrices, Journal of Integer Sequences, Article 00.1.4, Vol. 3 (2000), (www.research.att.com/~njas/sequences/JIS); cond-mat/0003049.

  3. M. Bauer and O. Golinelli, Random incidence matrices: spectral density at zero energy, Saclay preprint T00/087; cond-mat/0006472.

  4. M. Bauer and O. Golinelli, Spectra of random forests, in preparation.

  5. G. Biroli and R. Monasson, A single defect approximation for localized states on random lattices, J. Phys. A: Math. Gen. 32:L255-L261 (1999).

    Google Scholar 

  6. B. Bollobàs, Modern Graph Theory, Graduate text in mathematics 184 (Springer, 1998).

  7. A. Cavagna, I. Giardina, and G. Parisi, Analytic computation of the instantaneous normal modes spectrum in low-density liquids, Phys. Rev. Lett. 83:108–111 (1999).

    Google Scholar 

  8. P. Di Francesco, O. Golinelli, and E. Guitter, Meanders: a direct enumeration approach, Nucl. Phys. B 482:497–535 (1996), or preprint hep-th/9607039.

    Google Scholar 

  9. P. Erdös and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5:17–61 (1960).

    Google Scholar 

  10. S. N. Evangelou, Quantum percolation and the Anderson transition in dilute systems, Phys. Rev. B 27:1397–1400 (1983).

    Google Scholar 

  11. S. N. Evangelou and E. N. Economou, Spectral density singularities, level statistics, and localization in a sparse random matrix ensemble, Phys. Rev. Lett. 68:361–364 (1992).

    Google Scholar 

  12. S. N. Evangelou, A numerical study of sparse random matrices, J. Stat. Phys. 69:361–383 (1992).

    Google Scholar 

  13. Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1:233–241 (1981).

    Google Scholar 

  14. F. R. Gantmacher, Matrix Theory (Chelsea, New York, 1964).

    Google Scholar 

  15. A. Brooks Harris, Exact solution of a model of localization, Phys. Rev. Lett. 49:296–299 (1982).

    Google Scholar 

  16. D. Jakobson, S. D. Miller, I. Rivin, and Z. Rudnick, Eigenvalue spacings for regular graphs, in Emerging Applications of Number Theory, D. A. Hejhal et al., eds. (Springer, 1999).

  17. F. Juhász, On the spectrum of a random graph, in Algebraic Methods in Graph Theory, Lovász et al., eds., Coll. Math. Soc. J. Bolyai 25 (North-Holland, 1981), pp. 313–316.

  18. S. Kirkpatrick and T. P. Eggarter, Localized states of a binary alloy, Phys. Rev. B 6:3598–3609 (1972).

    Google Scholar 

  19. M. L. Mehta, Random Matrices, second edition (Academic Press, 1991).

  20. A. D. Mirlin and Y. V. Fyodorov, Universality of level correlation function of sparse random matrices, J. Phys. A: Math. Gen. 24:2273–2286 (1991).

    Google Scholar 

  21. G. J. Rodgers and A. J. Bray, Density of states of a sparse random matrix, Phys. Rev. B 37:3557–3562 (1988).

    Google Scholar 

  22. G. J. Rodgers and C. De Dominicis, Density of states of sparse random matrices, J. Phys. A: Math. Gen. 23:1567–1573 (1990).

    Google Scholar 

  23. N. J. A. Sloane, The encyclopedia of integer sequences, sequence A000296. (http://www.research.att.com/~njas/sequences/index.html)

  24. R.-P. Stanley, Enumerative Combinatorics, Vol. II (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  25. E. P. Wigner, The Collected Works of Eugene Paul Wigner, Part A, Vol. IV (Springer Verlag, Berlin, 1997), pp. 131–136.

    Google Scholar 

  26. E. P. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. Math. 67:325–327 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, M., Golinelli, O. Random Incidence Matrices: Moments of the Spectral Density. Journal of Statistical Physics 103, 301–337 (2001). https://doi.org/10.1023/A:1004879905284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004879905284

Navigation