Skip to main content
Log in

Numerical Results for the Hubbard Model: Implications for the High Tc Pairing Mechanism

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Numerical studies of the Hubbard model and its strong-coupling form, the t-J model, show evidence for antiferromagnetic, \(d_{x^{\text{2}} - y^2 } \)-pairing and stripe correlations which remind one of phenomena seen in the layered cuprate materials. Here, we ask what these numerical results imply about various scenarios for the pairing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

    Google Scholar 

  2. J. Hubbard, Proc. Roy. Soc. London A 276, 238 (1963).

    Google Scholar 

  3. J. E. Hirsch, Phys. Rev. Lett. 54, 1317 (1985).

    Google Scholar 

  4. C. Gros, R. Joynt, and T. M. Rice, Phys. Rev. B 36, 381 (1987).

    Google Scholar 

  5. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Google Scholar 

  6. J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

    Google Scholar 

  7. J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988).

    Google Scholar 

  8. R. J. Birgeneau et al., Phys. Rev. B 59, 13788 (1999).

    Google Scholar 

  9. E. Manousakis, Rev. Mod. Phys. 63 1 (1991).

    Google Scholar 

  10. S. R. White, R. M. Noack, and D. J. Scalapino, Phys. Rev. Lett. 73, 886 (1994).

    Google Scholar 

  11. M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka, Phys. Rev. Lett. 73, 3463 (1994).

    Google Scholar 

  12. E. Dagotto, J. Riera, and D. J. Scalapino, Phys. Rev. B 45, 5744 (1992).

    Google Scholar 

  13. M. Sigrist, T. M. Rice, and F. C. Zhang, Phys. Rev. B 49, 12058 (1994)

    Google Scholar 

  14. R. Noack, S. R. White, and D. J. Scalapino, Phys. Rev. Lett. 73, 882 (1994).

    Google Scholar 

  15. E. Dagotto and T. M. Rice, Science 271, 618 (1996).

    Google Scholar 

  16. M. Uehara et al., J. Phys. Soc. Jpn. 65, 2764 (1996).

    Google Scholar 

  17. T. M. Rice, et al., Phys. Rev. B 56, 14655 (1997).

    Google Scholar 

  18. S. R. White and D. J. Scalapino, Phys. Rev. B 57, 3031 (1998).

    Google Scholar 

  19. S. R. White and D. J. Scalapino, Phys. Rev. Lett. 80, 1272 (1998).

    Google Scholar 

  20. J. M. Tranquada et al., Phys. Rev. Lett. 78, 338 (1997).

    Google Scholar 

  21. S. R. White and D. J. Scalapino, Phys. Rev. B 60, R753 (1999).

    Google Scholar 

  22. D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986).

    Google Scholar 

  23. W. Metzner, this same issue and references contained therein.

  24. N. Furukawa, T. M. Rice, and M. Salmhofer, Phys. Rev. 81, 3195 (1998).

    Google Scholar 

  25. N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B 47, 2742 (1993).

    Google Scholar 

  26. S.-C. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. B 55, 7464 (1997).

    Google Scholar 

  27. S. Rommer, S. R. White, and D. J. Scalapino, cond-mat9912352.

  28. C. S. Hellbert and E. Manousakis, Phys. Rev. Lett. 78, 4609 (1997).

    Google Scholar 

  29. M. Calandra and S. Sorella, Phys. Rev. B 61, R11894 (2000).

    Google Scholar 

  30. P. W. Anderson, Science 235, 1196 (1987) and Theory of superconductivity in the High Tc Cuprates (Princeton University Press, Princeton, 1997).

    Google Scholar 

  31. P. Monthoux and D. Pines, Phys. Rev. B 49, 4261 (1994)

    Google Scholar 

  32. T. Dahm and D.J. Scalapino, Physica C 288, 33 (1997).

    Google Scholar 

  33. M. Fabrizio, Phys. Rev. B 48, 15838 (1993).

    Google Scholar 

  34. H. H. Lin, L. Balents, and M. Fisher, Phys. Rev. B 56, 6569 (1997).

    Google Scholar 

  35. E. Arrigoni and W. Hanke, Phys. Rev. Lett. 82, 2115 (1999).

    Google Scholar 

  36. S.-C. Zhang, Science 275, 1089 (1997).

    Google Scholar 

  37. D. J. Scalapino, S.-C. Zhang, and W. Hanke, Phys. Rev. B 58, 443 (1998)

    Google Scholar 

  38. S.-C. Zhang, J.-P. Hu, E. Arrigoni, W. Hanke, and A. Auerbach, Phys. Rev. B 60, 13070 (1999).

    Google Scholar 

  39. Z. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989). D. Poilblanc and T. M. Rice, Phys. Rev. B 39, 9749 (1989). H. J. Schulz, J. Physique 50, 2833 (1989).

    Google Scholar 

  40. V. J. Emery and S. A. Kivelson, in the Proceedings on Strongly-Correlated Electronic Materials: The Los Alamos Syposium 1993, K. S. Bedell et al., eds. (Addison Wesley, Redwood City, 1994), p. 619.

    Google Scholar 

  41. V. J. Emery, S. A. Kivelson, and S. A. Zachar, Phys. Rev. B 56, 6120 (1997).

    Google Scholar 

  42. D. A. Ivanov, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett. 84, 3958 (2000).

    Google Scholar 

  43. S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, cond-mat0005443.

  44. I. Affleck, D. J. Scalapino, S. R. White, unpublished.

  45. T. Senthil and M. P. A. Fisher, cond-mat9910224.

  46. S. Daul, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 84, 4188 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalapino, D.J., White, S.R. Numerical Results for the Hubbard Model: Implications for the High Tc Pairing Mechanism. Foundations of Physics 31, 27–39 (2001). https://doi.org/10.1023/A:1004147703543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004147703543

Keywords

Navigation