Skip to main content
Log in

Bose Condensation Without Broken Symmetries

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper considers the issue of Bose–Einstein condensation in a weakly interacting Bose gas with a fixed total number of particles. We use an old current algebra formulation of non-relativistic many body systems due to Dashen and Sharp to show that, at sufficiently low temperatures, a gas of weakly interacting Bosons displays Off-diagonal Long Range Order in the sense introduced by Penrose and Onsager. Even though this formulation is somewhat cumbersome it may demystify many of the standard results in the field for those uncomfortable with the conventional broken symmetry based approaches. All the physics presented here is well understood but as far as we know this perspective, although dating from the 60's and 70's, has not appeared in the literature. We have attempted to make the presentation as self-contained as possible in the hope that it will be accessible to the many students interested in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995); K. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995); C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 78, 985 (1997).

    Google Scholar 

  2. For a historical introduction to Bose condensation with references to the early literature on the weakly interacting Bose gas see A. Griffin, in the Proceedings of the International School of Physics “Enrico Fermi,” Course CXL, M. Inguscio, S. Stringari, and C. Wieman, eds. (IOP Press, Amsterdam, 1999).

    Google Scholar 

  3. F. Dafovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999); see also, Proceedings of the International School of Physics “Enrico Fermi,” Course CXL, M. Inguscio, S. Stringari, and C. Wieman, eds. (IOP Press, Amsterdam, 1999).

    Google Scholar 

  4. P. C. Hohenberg and P. C. Martin, Ann. Phys. (N.Y.) 28, 349 (1964); N. N. Bogoliubov, in Lectures on Quantum Statistics (Gordon 6 Breach, New York, 1970); see also, D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, New York, 1975).

    Google Scholar 

  5. M. Lewenstein and L. You, Phys. Rev. Lett. 77, 3489 (1996); C. W. Gardiner, Phys. Rev. A 56, 1414 (1997); P. Villain, M. Lewenstein, R. Dum, Y. Castin, L. You, A. Imamoglu, and T. B. A. Kennedy, J. of Modern Optics 44, 1775 (1997); Y. Castin and R. Dum, Phys. Rev. A 57, 3008 (1998).

    Google Scholar 

  6. R. F. Dashen and D. H. Sharp, Phys. Rev. 165, 1857 (1968); see also D. H. Sharp, ibid 165, 1867 (1968); C. G. Callan, R. F. Dashen, and D. H. Sharp, ibid 165, 1883 (1968); J. Grodnik and D. H. Sharp, Phys. Rev. D 1, 1531 (1970); ibid 1, 1546 (1970). To our knowledge the field theoretic approach to Bose systems using collective fields was pioneered by N. N. Bogoliubov and D. N. Zubarev, Sov. Phys. JETP 1, 83 (1955).

    Google Scholar 

  7. V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics (Reidel, Dordrecht, 1983).

    Google Scholar 

  8. S. Sunakawa, S. Yamasaki, and T. Kebukawa, Prog. Theor. Phys. 41 919 (1969); D. D. H. Yee, Phys. Rev. 184, 196 (1969); B. Tsu-Shen Chang, J. Math. Phys. 12, 971 (1971); Phys. Rev. A 5, 1480 (1972); G. S. Grest and A. K. Rajagopal, Phys. Rev. A 10, 1395 (1974); A. K. Rajagopal and G. S. Grest, ibid 10, 1837 (1974).

    Google Scholar 

  9. O. Penrose, Phil. Mag. 42 1373 (1951); O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

    Google Scholar 

  10. We note that, by contrast, symmetry breaking also implies ODLRO in the correlation function (1).

  11. Here we will not consider fragmented condensates.

  12. The operator \(\hat P = \Psi \left( {{\text{r}}} \right)\left[ {{1 \mathord{\left/ {\vphantom {1 {\hat n}}} \right. \kern-\nulldelimiterspace} {\hat n}}\left( {{\text{r}}} \right)} \right]\Psi ^\dag \left( {{\text{r}}} \right)\) is a projection operator \(\left( {\hat P^2 = \hat P} \right)\) with eigenvalues λ=0, 1. Since for any finite interaction no bosonic state can be annihilated by \(\hat P,\hat P \equiv {\hat l}\) on all states in the Hilbert space.

  13. G. A. Goldin and D. H. Sharp, in Group Representations in Mathematics and Physics, Battelle Seattle 1969 Rencontres, V. Bargmann, ed. (Springer, New York, 1970); G. A. Goldin, J. Math. Phys. 12, 462 (1971); G. A. Goldin, J. Grodnik, R. T. Powers, and D. H. Sharp, J. Math. Phys. 15, 88 (1974).

    Google Scholar 

  14. G. Baym and C. J. Pethick, Phys. Rev. Lett. 76, 6 (1996).

    Google Scholar 

  15. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).

    Google Scholar 

  16. N. N. Bogoliubov, J. Phys. USSR 11, 23 (1947); for a recent review see, for example, A. L. Fetter, in the Proceedings of the International School of Physics “Enrico Fermi,” Course CXL, M. Inguscio, S. Stringari, and C. Wieman, eds. (IOP Press, Amsterdam 1999).

    Google Scholar 

  17. B. D. Josephson, Phys. Lett. 1, 251 (1962).

    Google Scholar 

  18. M. Ma and T.-L. Ho, J. Low Temp. Phys. 115, 61 (1999).

    Google Scholar 

  19. P. W. Anderson, Phys. Rev. 86 694 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruckenstein, A.E. Bose Condensation Without Broken Symmetries. Foundations of Physics 30, 2113–2124 (2000). https://doi.org/10.1023/A:1003745608929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003745608929

Keywords

Navigation