Skip to main content
Log in

Classical Electromagnetism and the Aharonov–Bohm Phase Shift

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Although there is good experimental evidence for the Aharonov–Bohm phase shift occurring when a solenoid is placed between the beams forming a double-slit electron interference pattern, there has been very little analysis of the relevant classical electromagnetic forces. These forces between a point charge and a solenoid involve subtle relativistic effects of order v2/c2 analogous to those discussed by Coleman and Van Vleck in their treatment of the Shockley–James paradox. In this article we show that a treatment exactly analogous to that given by Coleman and Van Vleck predicts classical electromagnetic forces which provide the basis for the Aharonov–Bohm phase shift. The magnetic force on the solenoid due to the passing charge leads to a displacement of the solenoid center of energy which must be balanced by the displacement of the passing charge. This classical displacement of the passing charge is exactly what is required to account for the Aharonov–Bohm phase shift. Also, we discuss a magnetic moment model which appears frequently in the literature and note that although the model provides conservation of linear momentum, it does not satisfy the general requirements for relativistic theories. We give an example suggesting that the new equation of motion for a magnetic moment proposed by Aharonov, Pearle, and Vaidman based upon the hidden momentum of the magnetic moment is completely inappropriate. Finally, we emphasize that the Aharonov–Casher phase shift is also explained by classical electromagnetic forces exactly parallel to those explaining the Aharonov–Bohm phase shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Aharonov and D. Bohm, Phys.Rev. 115, 485 (1959).

    Google Scholar 

  2. See, for example, R.G. Chambers, Phys.Rev.Lett. 5, 3 (1960) or G.Mollenstedt and W.Bayh, Naturwissenschaften 49, 81 (1962).See also the reviews by S.Olariu and I.I.Popescu, Rev.Mod.Phys.57, 339 (1985) and by M.Peshkin and A.Tonomura, “The Aharonov_Bohm effect,” in Lecture Notes in Physics, Vol.340 (Springer, New York, 1989).

    Google Scholar 

  3. S. Coleman and J.H. Van Vleck, Phys.Rev. 171, 1370 (1968).

    Google Scholar 

  4. W. Shockley and R.P. James, Phys.Rev.Lett. 18, 876 (1967).

    Google Scholar 

  5. R.G. Chambers, Phys.Rev.Lett. 5, 3 (1960).

    Google Scholar 

  6. G. Matteucci and G. Pozzi, Phys.Rev.Lett. 54, 2469 (1985).

    Google Scholar 

  7. A.W. Overhauser and R. Colella, Phys.Rev.Lett. 33, 1237 (1974).R.Colella, A.W.Overhauser, and S.A.Werner, Phys.Rev.Lett.34, 1472 (1974).

    Google Scholar 

  8. See, for example, R.J. Cook, H. Fearn, and P.W. Milonni, Am.J.Phys. 63, 705 (1995), or T.H.Boyer, Am.J.Phys.40, 56 (1972).

    Google Scholar 

  9. T.H. Boyer, Phys.Rev.D 8, 1679 (1973), and Nuovo Cimento B 100, 685 (1987).

    Google Scholar 

  10. T.H. Boyer, Phys.Rev.D 8, 1667 (1973).

    Google Scholar 

  11. See, for example, J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p.172.

    Google Scholar 

  12. See Ref.4 and also W.H. Furry, Am.J.Phys. 37, 621 (1969).

    Google Scholar 

  13. See Ref.3, p.1370.

  14. See Ref.3, p.1372.

  15. See, for example, Ref.11 end papers.

  16. See T.H. Boyer, Phys.Rev.D 8, 1667 (1973) for related but different manipulations related to the vector potential.

    Google Scholar 

  17. See Ref.3, p.171.

  18. Reference 3, Eq.(9).

  19. T.H. Boyer, Nuovo Cimento B 100,685 (1987).

    Google Scholar 

  20. Y. Aharonov, P. Pearle, and L. Vaidman, Phys.Rev.A 37, 4052 (1988) and L.Vaidman, Am.J.Phys. 58, 978 (1990).

    Google Scholar 

  21. Y. Aharonov and A. Casher, Phys.Rev.Lett. 53, 319 (1984).

    Google Scholar 

  22. A. Cimmino, G.I. Opat, A.G. Klein, H. Kaiser, S.A. Werner, M. Arif, and R. Clothier, Phys.Rev.Lett. 63, 380 (1989).

    Google Scholar 

  23. T.H. Boyer, Phys.Rev.A 36, 5083 (1987).

    Google Scholar 

  24. See, for example, the presentation by A.G. Klein, Physica B 137, 230 (1986).

    Google Scholar 

  25. See, for example, David J. Griffiths, Introduction to Electrodynamics, 2nd edn. (Prentice–Hall, Upper Saddle River, New Jersey, 1981), p.247, or J.D.Jackson, Ref.11, p.185.

    Google Scholar 

  26. See, for example, David J. Griffiths, Introduction to Electrodynamics, 3rd.edn. (Prentice- Hall, Upper Saddle River, New Jersey, 1999), pp.520–521; P.Penfield and H.Haus, The Electrodynamics of Moving Media (M.I.T.Press, Cambridge, MA, 1967), p.215; L.Vaidman, Am.J.Phys.58, 978 (1990); S.Coleman and J.H.Van Vleck, Phys.Rev.171, 1370 (1968), footnote 9.

    Google Scholar 

  27. W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison–Wesley, Reading, MA, 1955), p.270.

    Google Scholar 

  28. See, for example, Ref.11, p.181.

  29. See, for example, Ref.11, p.657.

  30. See, for example, Ref.25, p.162.

  31. L. Page and N.I. Adams, Am.J.Phys. 13, 141 (1945).

    Google Scholar 

  32. See, for example, Ref.11, p.552.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, T.H. Classical Electromagnetism and the Aharonov–Bohm Phase Shift. Foundations of Physics 30, 907–932 (2000). https://doi.org/10.1023/A:1003654508964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003654508964

Keywords

Navigation