Skip to main content
Log in

Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Supposing the ability to elect in situspecies-specific replication rates of phytoplankton tobe an essential step towards the development of soundecological models of phytoplankton populations inlakes and reservoirs, we promote the case for takingmaximum specific growth rates under ideal cultureconditions as base, rather than derivations ofspecific growth rate assembled from models ofphotosynthetic carbon fixation and nutrient uptake. Itis argued that these yield capacities for growth butcan greatly exaggerate in-situ replication rates. Theuse of published regressions of robust properties oforganismic assembly is recommended and some relevantmodel algorithms are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez Cobelas, M., J. L. Velasco, A. Rubio & A. J. Brook, 1988. Phased cell division in a field population of Staurastrum longiradiatum (Conjugatophyceae: Desmidaceae). Arch. Hydrobiol. 112: 1–20.

    Google Scholar 

  • Amezaga, E. de, C. R. Goldman & E. A. Stull, 1973. Primary productivity and rate of change of biomass of various species of phytoplankton in Castle Lake, Calfornia. Verh. int. Ver. Limnol. 18: 1768–1775.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role ofwater-columnmicrobes in the sea. Mar. Ecol. Progr. Ser. 10: 257–263.

    Google Scholar 

  • Bannister, T. T. & A. D. Weidemann, 1988. The maximum quantum yield of phytoplankton photosynthesis. J. Plankton Res. 6: 275–294.

    Google Scholar 

  • Banse, K., 1976. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size–a review. J. Phycol. 12: 135–140.

    Google Scholar 

  • Braunwarth, C. & U. Sommer, 1985. Analyses of the in situ growth rates of Cryptophyceae by use of the mitotic index. Limnol. Oceanogr. 30: 893–897.

    Google Scholar 

  • Buranathanitt, T., D. H. Cockrell & P. H. John, 1982. Some effects of Langmuir circulation on the quality of water resource systems. Ecol. Modell. 15: 49–74.

    Google Scholar 

  • Burmaster, D., 1979. The continuous culture of phytoplankton: mathematical equivalence among three steady-state models. Am. Nat. 113: 123–134.

    Google Scholar 

  • Cloern, J. E., C. Grenz & L. Vidergar-Lucas, 1995. An empirical model of the phytoplankton chlorophyll:carbon ratio–the conversion factor between productivity and growth rate. Limnol. Oceanogr. 40: 1313–1321.

    Google Scholar 

  • Coleman, A. W., 1980. Enhanced detection of bacteria in natural environments fluorchrome staining of DNA. Limnol. Oceanogr. 25: 948–951.

    Google Scholar 

  • Crumpton, W. G. & R. G. Wetzel, 1982. Effects of differential growth and mortality in the seasonal succession of phytoplankton populations in Lawrence Lake, Michigan. Ecology 63: 1729–1739.

    Google Scholar 

  • Cuhel, R. L. & D. R. S. Lean, 1987. Protein synthesis by lake plankton measured using in situ carbon dioxide and sulfate assimilation. Can. J. Fish. aquat. Sci. 44: 2102–2117.

    Google Scholar 

  • Dauta, A., 1982. Conditions de développement du phytoplancton. Étude comparative du comportement de huit espèces en culture. I. Détermination des parametres de croissance et fonction de la lumière et de la tempèrature. Ann. Limnol. 18: 217–262.

    Google Scholar 

  • Dring, M. J. & D. H. Jewson, 1982. What does 14C uptake by phytoplankton really measure? A theoretical modelling approach. Proc. r. Soc. B 214: 351–368.

    Google Scholar 

  • Droop, M. R., 1973. Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264–272.

    Google Scholar 

  • Droop, M. R., 1974. The nutrient status of algal cells in continuous culture. J. mar. biol. Ass. 54: 825–855.

    Google Scholar 

  • Dugdale, R. C., 1967. Nutrient limitation in the sea: dynamics, identification and significance. Limnol. Oceanogr. 12: 685–695.

    Google Scholar 

  • Eppley, R. W. & J. H. Sharp, 1975. Photosynthetic measurements in the central North Pacific: the dark-loss of carbon in 24-h incubations. Limnol. Oceanogr. 20: 981–987.

    Google Scholar 

  • F.B.A., 1989. The FBA-Welsh Water simulation model of phytoplankton dynamics in a flushed system–authentication in a coastal lagoon. Freshwat. Biol. Assoc., Ambleside. (Cyclostyled).

  • Falkowski, P. G., 1980. Light-shade adaptation in marine phytoplankton. In Falkowski, P. G. (ed.), Primary Production in the Sea. Plenum Press, New York: 99–118.

    Google Scholar 

  • Falkowski, P. G., 1984. Physiological responses to natural light regimes. J. Plankton Res. 6: 295–307.

    Google Scholar 

  • Forsberg, B. R., 1985. The fate of planktonic primary production. Limnol. Oceanogr. 30: 807–819.

    Google Scholar 

  • Fogg, G. E., 1966. The extracellular products of algae. Oceanogr. mar. Biol. ann. Rev. 4: 195–212.

    Google Scholar 

  • Fogg, G. E., 1971. Extracellular products of algae in freshwater. Ergebn. Limnol. 5: 1–25.

    Google Scholar 

  • Foy, R. H., C. E. Gibson & R. V. Smith, 1976. The influence of day length, light intensity and temperature on the growth rates of planktonic blue-green algae. Brit. phycol. J. 11: 151–163.

    Google Scholar 

  • Frempong, E., 1984. A seasonal sequence of diel distribution patterns for the planktonic dinoflagellate Ceratium hirundinellain a eutrophic lake. Freshwat. Biol. 14: 401–421.

    Google Scholar 

  • Gaarder, T. & H. H. Gran, 1927. Production of plankton in the Oslo Fjord. Rapp. Conseil. 42: 1–48.

    Google Scholar 

  • Harris, G. P., 1978. Phytoplankton photosynthesis, productivity and growth. Ergebn. Limnol. 10: 1–163.

    Google Scholar 

  • Harris, G. P., 1983. Mixed-layer physics and phytoplankton populations: studies in equilibrium and non-equilibrium ecology. In Round, F. E. & D. J. Chapman (eds), Progress in Phycological Research, Vol. 2. Elsevier, Amsterdam: 1–52.

    Google Scholar 

  • Hecky, R. E. & E. J. Fee, 1981. Primary production and rates of algal growth in Lake Tanganyika. Limnol. Oceanogr. 26: 532–546.

    Google Scholar 

  • Heller, M., 1977. The phased division of the freshwater dinoflagellate, Ceratium hirundinellaand its use as a method of assessing growth in a natural population. Freshwat. Biol. 7: 527–533.

    Google Scholar 

  • Hilton, J., A. E. Irish & C. S. Reynolds, 1992. Active reservoir management: a model solution. In Sutcliffe, D. W. & J. G. Jones (eds), Eutrophication: Research andApplication toWater Supply. Freshwat. Biol. Assoc. Ambleside: 185–92.

  • Hoogenhout, H. & J. Amesz, 1965. Growth rates of photosynthetic microorganisms in laboratory cultures. Arch. Mikrobiol. 50: 10–25.

    Google Scholar 

  • I.F.E., 1993. Annual Report of the Institute of Freshwater Ecology. Natural Environment Research Council, Swindon.

    Google Scholar 

  • Jassby, A. D. & C. R. Goldman, 1974. Loss rates from a phytoplankton community. Limnol. Oceanogr. 19: 618–627.

    Google Scholar 

  • Jewson, D. H. & R. B Wood, 1976. Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh. int. Ver. Limnol. 19: 1037–1044.

    Google Scholar 

  • Jiménez Montealegre, R., J. Verreth, K. Steenbergen, J. Moed & M. Machiels, 1995. A dynamic simulation model for the blooming of Oscillatoria agardhiiin a monomictic lake. Ecol. Modell. 78: 17–24.

    Google Scholar 

  • Jørgensen, S. E., 1995. State of the art of ecological modelling in limnology. Ecol. Modell. 78: 101–115.

    Google Scholar 

  • Knoechel, R. & J. Kalff, 1978. An in situ study of the productivity and population dynamics of five freshwater plankton diatom species. Limnol. Oceanogr. 23: 195–218.

    Google Scholar 

  • Knox, R. S., 1977. Photosynthetic efficiency and exciton trapping. In Primary Processes of Photosynthesis. Elsevier, Amsterdam: 55–97.

    Google Scholar 

  • Kolber, Z. & P. G. Falkowski, 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol.Oceanogr. 38: 1646–1665.

    Google Scholar 

  • Long, S. P., S. Humphries & P. G. Falkowski, 1994. Photoinhibition of photosynthesis in nature. Ann. Rev. plant Physiol. plant mol. Biol. 45: 633–652.

    Google Scholar 

  • Lucas, W. J. & J. A. Berry, 1985. Inorganic carbon uptake by aquatic photosynthetic organisms. Am. Soc. Plant Physiol., Rockville.

  • Lund, J. W. G., 1949. Studies on Asterionella. I. The origin and nature of the cells producing seasonal maxima. J. Ecol. 37: 389–419.

    Google Scholar 

  • Lund, J. W. G., 1950. Studies on Asterionella formosaHass. II. Nutrient depletion and the spring maximum. J. Ecol. 38: 1–35.

    Google Scholar 

  • Marra, J., 1978. Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar. Biol. 46: 203–208.

    Google Scholar 

  • Moss, B., 1973a. The influence of environmental factors on the distribution of freshwater algae: an experimental study. II. The role of pH and the carbon dioxide and the bicarbonate system. J. Ecol. 61: 157–177.

    Google Scholar 

  • Moss, B., 1973b. The influence of environmental factors on the distribution of freshwater algae: an experimental study. IV. Growth of test species in natural lake waters. J. Ecol. 61: 193–211.

    Google Scholar 

  • Naumann, E., 1919: Några synpunkter angående limnoplanktons öokologi med särskild hänsyn till fytoplankton. Svensk bot. Tidskr. 13: 129–163.

    Google Scholar 

  • Nyholm, N., 1977. Kinetics of phosphate-limted growth. Biotechnol. Bioengng. 19: 467–492.

    Google Scholar 

  • Ojala, A. & R. I. Jones, 1993. Spring development and mitotic division and pattern of a Cryptomonasin an acidified lake. Eur. J. Phycol. 28: 17–24.

    Google Scholar 

  • Pahl-Wostl, C. & D. M. Imboden, 1990. DYPHORA–a dynamic model for the rate of photosynthesis of algae. J. Plankton Res. 12: 1207–1221.

    Google Scholar 

  • Pearsall, W. H., 1922. A suggestion as to the factors influencing the distribution of free-floating vegetation. J. Ecol. 9: 241–253.

    Google Scholar 

  • Peterson, B. J., 1978. Radio-carbon uptake: its relation to net particulate carbon production. Limnol. Oceanogr. 23: 179–184.

    Google Scholar 

  • Platt, T. & A. D. Jassby, 1976. The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12: 421–430.

    Google Scholar 

  • Pollingher, U. & T. Berman, 1977. Quantitative and qualitative changes in the phytoplankton of Lake Kinneret, Israel, 1972–1975. Oikos 29: 418–428.

    Google Scholar 

  • Pollingher, U. & C. Serruya, 1976. Phased division of Peridinium cinctumf. westii(Dinophyceae) and development of the Lake Kinneret (Israel) bloom. J. Phycol. 12: 163–170.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Post, A. F., R. de Wit & L. R. Mur, 1985. Interactions between temperature and light intensity on growth and photosynthesis of the Cyanobacterium, Oscillatoria agardhii. J. Plankton Res. 7: 487–495.

    Google Scholar 

  • Raven, J. A., 1982. The energetics of freshwater algae: energy requirements for biosynthesis and volume regulation. New Phytol. 92: 1–20.

    Google Scholar 

  • Raven, J. A., 1991. Implications of inorganic carbon utilization: ecology, evolution and geochemistry. Can. J. Bot. 69: 908–924.

    Google Scholar 

  • Reynolds, C. S., 1978. The plankton of the North-west Midland meres. Occ. Publs. Caradoc Severn Valley Fld Club, 2: 1–36.

    Google Scholar 

  • Reynolds, C. S., 1983. Growth-rate responses of Volvox aureus Ehrenb. (Chlorophyta, Volvocales) to variability in the physical environment. Br. phycol. J. 18: 433–442.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge, 184 pp.

    Google Scholar 

  • Reynolds, C. S., 1986. Experimental manipulations of the phytoplankton periodicity in large limnetic enclosures in Blelham Tarn, English Lake District. Hydrobiologia 38: 43–64.

    Google Scholar 

  • Reynolds, C. S., 1989. Physical determinants of phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology. Brock-Springer, Madison: 9–56.

    Google Scholar 

  • Reynolds, C. S., 1990. Temporal scales of variability in pelagic environments and the response of phytoplankton. Freshwat. Biol. 23: 25–53.

    Google Scholar 

  • Reynolds, C. S., 1993. Swings and roundabouts: engineering the environment of algal growth. In White, K. N., E. G. Bellinger, A. J. Saul, M. Symes & K. Hendry (eds), Urban Waterside Regeneration: Problems and Prospects. Ellis Horwood, Chichester: 330–349.

    Google Scholar 

  • Reynolds, C. S., 1996a. The threat of algal blooms in proposed estuarine barrages: models, predictions, risks. In Burt, N. & J. Watts (eds), Barrages: Engineering and Environmental Impacts. John Wiley, Chichester: 83–89.

    Google Scholar 

  • Reynolds, C. S., 1996b. The plant-life of the pelagic. Verh. int. Ver. Limnol. 26: 97–113.

    Google Scholar 

  • Reynolds, C. S., 1997. Modelling phytoplankton dynamics and its application to lake management. In Harper, D. J. & A. J. D. Ferguson (eds), The Ecological Basis for the Management of Lakes and Reservoirs. Wiley, Chichester: in press

    Google Scholar 

  • Reynolds, C. S. & M. S. Glaister, 1993. Spatial and temporal changes in phytoplankton abundance in the upper and middle reaches of the River Severn. Arch. Hydrobiol. (Suppl.) 101: 1–22.

    Google Scholar 

  • Reynolds, C. S., G. P. Harris & D. N. Gouldney, 1985. Comparison of carbon-specific growth rates and rates of cellular increase of phytoplankton in large limnetic enclosures. J. Plankton Res. 7: 791–820.

    Google Scholar 

  • Reynolds, C. S., J. M. Thompson, A. J. D. Ferguson & S. W. Wiseman, 1982. Loss processes in the processes in the population dynamics of phytoplankton maintained in closed systems. J. Plankton Res. 4: 561–600.

    Google Scholar 

  • Reynolds, C. S. & S. W. Wiseman, 1982. Sinking losses of phytoplankton in closed limnetic systems. J. Plankton. Res. 4: 489–522.

    Google Scholar 

  • Robarts, R. D. & C. Howard-Williams, 1989. Diel changes in fluorescence capacity, photosynthesis and macromolecular synthesis by Anabaenain reponse to natural variations in solar irradiance. Ergebn. Limnol. 32: 35–48.

    Google Scholar 

  • Schanz, F. & Z. Dubinsky, 1988. The afternoon depression in primary productivity in a high-rate oxidation pond (HROP). J. Plankton Res. 10: 373–383.

    Google Scholar 

  • Shapiro, J., 1990. Current beliefs regarding dominance by bluegreens: the case for the importance of CO2 and pH. Verh. int. Ver. Limnol. 24: 38–54.

    Google Scholar 

  • Sharp, J. H., 1977. Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol. Oceanogr. 22: 381–399.

    Google Scholar 

  • Steel, J.A., 1995. Modelling adaptive phytoplankton in a variable environment. Ecol. Modell. 78: 117–127.

    Google Scholar 

  • Steeman-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Conseil. 18: 117–140.

    Google Scholar 

  • Straškraba, M., 1995. Messages from the meeting ‘Mathematical modelling in Limnology’. Ecol. Modell. 78: 3–5.

    Google Scholar 

  • Talling, J. F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133–149.

    Google Scholar 

  • Talling, J. F., 1966. Photosynthetic behaviour in stratified and unstratified populations of a planktonic diatom. J. Ecol. 54: 99–127.

    Google Scholar 

  • Talling, J. F., 1976. The depletion of carbon dioxide from lake water by phytoplankton. J. Ecol. 64: 79–121.

    Google Scholar 

  • Talling, J. F., 1984. Past and contemporary trends and attitudes to work on primary productivity. J. Plankton Res. 6: 203–217.

    Google Scholar 

  • Tilzer, M. M., 1984. Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J. Plankton Res. 6: 309–324.

    Google Scholar 

  • Vadstein, O., Y. Olson, H. Reinertsen & A. Jensen, 1993. The role of planktonic bacteria in lakes–sink and link. Limnol. Oceanogr. 38: 539–544.

    Google Scholar 

  • Vollenweider, R. A., 1965. Calculation models of photosynthesisdepth curves and some implications regarding day rate estimates in primary production measurements. Mem. Ist. ital. Idrobiol. 18: 425–457.

    Google Scholar 

  • Watson, A. J., R. C. Uppstill-Goddard & P. S. Liss, 1991. Air-sea exchange in rough and stormy seas measured by a dual-tracer technique. Nature 349: 145–147.

    Google Scholar 

  • Woods, J. D. & R. Onken, 1982. Diurnal variation and primary production in the ocean–preliminary results of a Lagrangian ensemble model. J. Plankton Res. 4: 735–756.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, C.S., Irish, A.E. Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates. Hydrobiologia 349, 5–17 (1997). https://doi.org/10.1023/A:1003020823129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003020823129

Navigation