Skip to main content
Log in

Biodegradation of gasoline and BTEX in a microaerophilic biobarrier

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Continuous bioremediation of gasoline-contaminatedwater in a packed-bed biobarrier system underoxygen-limited conditions is discussed. This studywas part of an extensive effort to develop analternative technology for the in situbioremediation of hydrocarbons where there is alimited supply of oxygen. Protruded stainless steelpieces and granulated peat moss were used as packingmaterial to support microbial growth in twobiobarriers. The inoculum was an enrichment culture ofan indigenous microbial population from a soil sample.The biobarriers' inlet gasoline concentrations and thelinear liquid velocities were similar to thosecommonly found at in situ conditions. Gasolineremoval efficiencies ranged from 94% to 99.9% in thestainless steel-packed biobarrier, and from 86.6% to99.6% in the peat moss-packed biobarrier. Effluentgasoline concentrations below 0.03 mg/l were obtainedat gasoline loading rates less than 27.5 mg/l.d in thestainless steel-packed biobarrier. The remainingfraction of gasoline in the effluent consisted mainlyof three aliphatic compounds and not the aromaticcompounds. Both biobarrier packings supported nearcomplete removal of the most soluble aromatichydrocarbons of gasoline (BTEX) under all theconditions examined. The consumption of sulfate andthe presence of sulfate-reducing microorganismssuggested the presence of anaerobic metabolism duringthe degradation of gasoline. Up to 92% gasoline wasremoved during the first 3 cm of the biobarriers'length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleton EL (1996) A nickel-iron wall against contaminated groundwater. Environ. Sci. Technol. 30: 536–539.

    Google Scholar 

  • Barbaro JR, Barker JF & Butler BJ (1997) In situ bioremediation of gasoline residuals under mixed electron-acceptor conditions. In: Alleman BC & Leeson A (Eds), Proceedings of the 4th International Symposium of In Situ and On-Site Bioremediation (pp. 21–26). New Orleans, April 28–May1.

  • Barbash J & Roberts PV (1986) Volatile organic chemical contamination of groundwater resources in the US. J. Water Pollution Control Federation 58: 343–348.

    Google Scholar 

  • Brown RA & Norris RD (1994) The evolution of a technology: Hydrogen peroxide in in situ bioremediation. In: Hinchee RE, Alleman BC, Hoeppel RE & Miller RN (Eds), Hydrocarbon Bioremediation (pp. 148–162). CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Catwright GC (1991) Limitations of pump and treat technology. Pollution Eng. November, pp. 64–68.

  • Chiang CY, Salanitro JP, Chai EY, Colthart JD & Klein CL (1989) Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer-data analysis and computer modeling. Groundwater 27: 823–834.

    Google Scholar 

  • Cook EE, Kincannon DF (1971) An evaluation of trickling filter performance. Water and Sewage Works April, pp. 90–95.

  • Edwards EA & Grbic-Galic D (1992) Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl. Environ. Microbiol. 58: 2663–2666.

    Google Scholar 

  • Focht R, Vogan J & O'Hannesin S (1996) Field application of reactive iron walls for in-situ degradation of volatile organic compounds in groundwater. Remediation. Summer, pp. 81–94.

  • Forget D, Deschenes L, Karamanev D & Samson R (1996) Caracterisation d'un nouveau milieu filtrant pour la biofiltration in situ des BTEX dans les eaux souterraines. In: Delisle CE & Bouchard MA (Eds), 19th International Symposium on Wastewater Treatment (pp. 263–274), Montreal, Canada, November 19–21.

  • Gavaskar AR, Gupta N, Sass BM, Janosy, RJ & O'Sullivan D (1998) Permeable Barriers for Groundwater Remediation, pp. 1–14, Battelle Press, Columbus, Ohio.

    Google Scholar 

  • Hasbach A (1993) Moving beyond pump and treat, Pollution Eng. March: 36–39.

  • Hutchins SR, Sewell GW, Kovacs DA & Smith GA (1991) Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. Technol. 25: 68–76.

    Google Scholar 

  • Hutchins SR, Wilson JT & Kampbell DH (1995) In situ bioremediation of a pipeline spill using nitrate as the electron acceptor. In: Hinchee RE, Kittel JA & Reisinger HJ (Eds), Applied Bioremediation of Petroleum Hydrocarbons, pp. 143–153. Battelle Press, Columbus, Ohio.

    Google Scholar 

  • Kuhn EP, Colberg PJ, Schnoor JL, Wanner O, Zehnder AJB & Schwarzenbach RP (1985) Microbial transformation of substituted benzenes during infiltration of river water to groundwater: Laboratory column studies. Environ. Sci. Technol. 19: 961–968.

    Google Scholar 

  • Lovley DR, Coates JD, Woodward JC & Phillips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61: 953–958.

    Google Scholar 

  • Mallakin A & Ward OP (1996) Degradation of BTEX compounds in liquid media and in peat biofilters. J. Ind. Microbiol. 16: 309–318.

    Google Scholar 

  • Mehlman MA (1996) Dangerous and cancer-causing properties of products and chemicals in the oil-refining and petrochemical industry. Toxicol. Ind. Health 12: 613–627.

    Google Scholar 

  • Miksell MD, Kukor JJ & Olson RH (1993) Metabolic diversity of aromatic hydrocarbon-degrading bacteria from a petroleum-contaminated aquifer. Biodegradation 4: 249–259.

    Google Scholar 

  • Prince RC (1993) Petroleum spill bioremediation in marine environments. Critical Rev. Microbiol. 19: 217–242.

    Google Scholar 

  • Rael J, Shelton S & Dayaye R (1995) Permeable barriers to remove benzene: Candidate media evaluation. J. Env. Eng. May: 411–415.

  • Starr RC & Cherry JA (1994) In situ remediation of contaminated groundwater: The funnel and gate system. Groundwater 32: 465–476.

    Google Scholar 

  • Stuart BJ, Bowlen GF & Kossen DS (1991) Competitive sorption of benzene, toluene and the xylenes onto soil. Environ. Prog. 10: 104–109.

    Google Scholar 

  • Su JJ & Kafkewitz D (1996) Toluene and xylene degradation by a denitrifying strain of Xanthomonas maltophilia with limited or no oxygen. Chemosphere 32: 1843–1850.

    Google Scholar 

  • Tahraoui K, Samson R & Rho D (1995) BTX degradation and dynamic parameters interaction in a 50-L biofilter. In: Hinchee RE, Kittel JA & Reisinger HJ (Eds), Applied Bioremediation of Petroleum hydrocarbons, pp. 257–262. Battelle press, Columbus, Richland.

    Google Scholar 

  • Thomson JAM, Day MJ, Sloan RL & Collins ML (1995) In Situ aquifer bioremediation at the french limited superfund site. In: Hinchee RE, Kittel JA & Reisinger HJ (Eds), Applied Bioremediation of Petroleum Hydrocarbons, pp. 453–459. Battelle Press, Columbus.

    Google Scholar 

  • Vidic RD & Pohland FG (1996) Treatment Walls, Technology Evaluation Report, TE–96–01. Pitsburgh, Pennsylvania: Groundwater Remediation Technologies Analysis Center.

    Google Scholar 

  • Warner SD (1998) The feasibility of permeable reactive barriers for in situ groundwater treatment: The Sunnyvale “Iron Wall” and beyond. Subsurface Barrier Technologies Conference: Engineering Advancements and Application Considerations for Innovative Barrier Technologies, January 26–27. Tucson, AZ. International Business Communications, Southborough, MA.

    Google Scholar 

  • Warner SD, Yamane CL, Gallinati JD, Szerdy, FS & Hankins DA (1995) Assessing the feasibility of permeable reactive barriers for treating VOC-affected groundwater in situ: experience from the first full-scale commercial application in California. International Containment Technology Workshop, Permeable Reactive Barriers Subgroup, 29–31 August, Baltimore, MD.

  • Widdel F & Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Truper HG, Dwokin M, Harder W & Schleifer KH (Eds), The Prokaryotes, pp. 3352–3378. Springer-Verlag, New York.

    Google Scholar 

  • Wilson LP & Bouwer EJ (1997) Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J. Ind. Microbiol. Biotechnol. 18: 116–130.

    Google Scholar 

  • Yerushalmi L & Guiot SR (1998) Kinetics of biodegradation of gasoline and its hydrocarbon constituents. Appl. Microbiol. Biotechnol. 49: 475–481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge R. Guiot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yerushalmi, L., Manuel, M.F. & Guiot, S.R. Biodegradation of gasoline and BTEX in a microaerophilic biobarrier. Biodegradation 10, 341–352 (1999). https://doi.org/10.1023/A:1008327815105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008327815105

Navigation