1.

Lord Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity. *Phil. Mag.* 34 (1917) 94–98.

2.

C. Herring, Theory of the pulsations of the gas bubble produced by an underwater explosion. In: G.K. Hartmann and E.G. Hill (eds.), *Underwater Explosion Research, Vol. II*. Washington: Office of Naval Research (1950).

3.

J.B. Keller and I.I. Kolodner, Damping of underwater explosion bubble oscilliations. *J. Appl. Phys.* 27 (1956) 1152–1161.

4.

A. Prosperetti and A. Lezzi, Bubble dynamics in a compressible liquid. Part 1. First order theory. *J. Fluid Mech.* 168 (1986) 457–478.

5.

B.D. Storey and A.J. Szeri, Water vapour, sonoluminescence and sonochemistry. *Proc. R. Soc. London* A456 (2000) 1685–1709.

6.

B.D. Storey and A.J. Szeri, A reduced model of cavitation physics for use in sonochemistry. *Proc. R. Soc. London* A457 (2001) 1685–1700.

7.

A.J. Szeri, B.D. Storey, A. Pearson and J.R. Blake, Heat and mass transfer during the violent collapse of non-spherical bubbles. *Phys. Fluids.* 15 (2003) 2576–2586.

8.

M. Lenoir, Calcul numérique de l'implosion d'une bulle de cavitation au voisinage d'une paroi ou d'une surface libre. *J. Mécanique* 15 (1976) 725–751.

9.

L. Guerri, G. Lucca and A. Prosperetti, A numerical method for the dynamics of non-spherical cavitation bubbles. In: D.H. LeCroisette (ed.), *Proceedings of the 2nd International Colloquium on Drops and Bubbles*. Pasadena (CA): Jet Propulsion Laboratory (Publ. 82–7) (1982) pp. 175–181.

10.

A. Prosperetti and G. Seminara, Linear stability of a growing or collapsing bubble in a slightly viscous liquid. *Phys. Fluids* 21 (1978) 1465–1470.

11.

B.B. Taib, *Boundary Integral Method Applied to Cavitation Bubble Dynamics*. PhD thesis. The University of Wollongong, Australia (1985) 108pp.

12.

J.R. Blake, B.B. Taib and G. Doherty, Transient cavities near boundaries. Part 1. Rigid boundary. *J. Fluid Mech.* 170 (1986) 479–497.

13.

J.R. Blake, B.B. Taib and G. Doherty, Transient cavities near boundaries. Part 2. Free surface. *J. Fluid Mech.* 181 (1987) 197–212.

14.

J.P. Best, *The Dynamics of Underwater Explosions*. PhD thesis. The University of Wollongong, Australia (1991) 184pp.

15.

J.P. Best and A. Kucera, A numerical investigation of non-spherical rebounding bubbles. *J. Fluid Mech.* 245 (1992) 137–154.

16.

J.P. Best, The rebound of toroidal bubbles. In: J.R. Blake, J.M. Boulton-Stone and N.H. Thomas (eds.), *Bubble Dynamics and Interface Phenomena*, Vol. 23 of *Fluid Mechanics and its Applications*. Dordrecht: Kluwer Academic Publishers (1994) pp. 405–412.

17.

R.P. Tong, W.P. Schiffers, S.J. Shaw, J.R. Blake and D.C. Emmony, The rôle of 'splashing' in the collapse of a laser-generated cavity near a rigid boundary. *J. Fluid Mech.* 380 (1999) 339–361.

18.

O. Lindau and W. Lauterborn, Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. *J. Fluid Mech* 479 (2003) 327–348.

19.

T.S. Lundgren and N.N. Mansour, Oscillations of drops in zero gravity with weak viscous effects. *J. Fluid Mech.* 194 (1988) 479–510.

20.

M.S. Longuet-Higgins and E.D. Cokelet, The deformation of steep surface waves on water I. A numerical method of computation. *Proc. R. Soc. London* A350 (1976) 1–26.

21.

A. Pearson, *Hydrodynamics of Jet Impact in a Collapsing Bubble.* PhD thesis, The University of Birmingham (2002) 223 pp.

22.

T.B. Benjamin and A.T. Ellis, The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. *Phil. Trans. R. Soc. London* A260 (1966) 221–240.

23.

J.R. Blake, The Kelvin impulse: Application to cavitation bubble dynamics. *J. Austral. Math. Soc.* B30 (1988) 127–146.

24.

Y. Tomita and A. Shima, Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. *J. Fluid Mech.* 169 (1986) 535–564.