, Volume 61, Issue 2, pp 139-157

Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


This paper examine the Euler-Lagrange equations for the solution of the large deformation diffeomorphic metric mapping problem studied in Dupuis et al. (1998) and Trouvé (1995) in which two images I 0, I 1 are given and connected via the diffeomorphic change of coordinates I 0○ϕ−1=I 1 where ϕ=Φ1 is the end point at t= 1 of curve Φ t , t∈[0, 1] satisfying .Φ t =v t t ), t∈ [0,1] with Φ0=id. The variational problem takes the form

$$\mathop {\arg {\text{m}}in}\limits_{\upsilon :\dot \phi _t = \upsilon _t \left( {\dot \phi } \right)} \left( {\int_0^1 {\left\| {\upsilon _t } \right\|} ^2 {\text{d}}t + \left\| {I_0 \circ \phi _1^{ - 1} - I_1 } \right\|_{L^2 }^2 } \right),$$

where ‖v t V is an appropriate Sobolev norm on the velocity field v t(·), and the second term enforces matching of the images with ‖·‖L 2 representing the squared-error norm.

In this paper we derive the Euler-Lagrange equations characterizing the minimizing vector fields v t, t∈[0, 1] assuming sufficient smoothness of the norm to guarantee existence of solutions in the space of diffeomorphisms. We describe the implementation of the Euler equations using semi-lagrangian method of computing particle flows and show the solutions for various examples. As well, we compute the metric distance on several anatomical configurations as measured by ∫0 1v t V dt on the geodesic shortest paths.