[1]

Asperti, A., ‘Light affine logic’, *Proceedings of the Thirteenth Annual IEEE Symposium on Logic in Computer Science*, 1998, pp. 300-308.

[2]

Asperti, A., and L. Roversi, ‘Intuitionistic light affine logic (proof-nets, normalization complexity, expressive power, programming notation)’, *ACM Transactions on Computational Logic* 3(1): 137-175, 2002.

[3]

Baillot, P., ‘Stratified coherent spaces: a denotational semantics for light linear logic’, *Theoretical Computer Science*, to appear.

[4]

Barendregt, H. P., *The Lambda Calculus: Its Syntax and Semantics*, Elsevier North-Holland, 1981.

[5]

Cantini, A., ‘The undecidability of Grishin's set theory’, *Studia Logica* 74: 345-368, 2003.

[6]

Danos, V., and J.-B. Joinet, ‘Linear logic & elementary time’, *Information and Computation* 183(1): 123-137, 2003.

[7]

Girard, J.-Y., ‘Light linear logic’, *Information and Computation* 14(3): 175-204, 1998.

[8]

Girard, J.-Y., ‘Linear logic’, *Theoretical Computer Science* 50: 1-102, 1987.

[9]

Grishin, V. N., ‘A nonstandard logic and its application to set theory’, In *Studies in Formalized Languages and Nonclassical Logics (Russian)*, Izdat, Nauka, Moskow, 1974, pp. 135-171.

[10]

Grishin, V. N., ‘Predicate and set theoretic calculi based on logic without contraction rules’ (Russian), *Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya* 45(1): 47-68, 1981. English translation in *Math. USSR Izv.* 18(1): 41–59, 1982.

[11]

Hopcroft, J., and J. Ullman, *Introduction to Automata Theory, Languages, and Computation*, Addison-Wesley, Reading, Mass, 1979.

[12]

Kanovitch, M, M. Okada, and A. Scedrov, ‘Phase semantics for light linear logic’, *Theoretical Computer Science* 244(3): 525-549, 2003.

[13]

Komori, Y., ‘Illative combinatory logic based on BCK-logic’, *Mathematica Japonica* 34(4): 585-596, 1989.

[14]

Lincoln, P., A. Scedrov, and N. Shankar, ‘Decision problems for second order linear logic’, *Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer Science*, 1995, pp. 476-485.

[15]

Murawski, A. S., and C.-H. L. Ong, ‘Discreet games, light affine logic and PTIME computation’, *Proceedings of Computer Science Logic 2000*, Springer-Verlag, LNCS 1862, 2000, pp. 427-441.

[16]

Neergaard, P., and H. Mairson, ‘LAL is square: Representation and expressiveness in light affine logic’, presented at the Fourth International Workshop on Implicit Computational Complexity, 2002.

[17]

Peterson, U., ‘Logic without contraction as based on inclusion and unrestricted abstraction’, *Studia Logica* 64(3): 365-403, 2000.

[18]

Schwichtenberg, H., and A. S. Troelstra, *Basic Proof Theory*, Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

[19]

Shirahata, M., ‘A linear conservative extension of Zermelo-Fraenkel set theory’, *Studia Logica* 56: 361-392, 1996.

[20]

Shirahata, M., ‘Fixpoint theorem in linear set theory’, unpublished manuscript, available at http://www.fbc.keio.ac.jp/~sirahata/Research, 1999.

[21]

Terui, K., ‘Light affine lambda calculus and polytime strong normalization’, *Proceedings of the Sixteenth Annual IEEE Symposium on Logic in Computer Science*, 2001, pp. 209-220. The full version is available at http://research.nii.ac.jp/~terui.

[22]

Terui, K., *Light Logic and Polynomial Time Computation*, PhD thesis, Keio University, 2002. Available at http://research.nii.ac.jp/~terui.

[23]

White, R., ‘A demonstrably consistent type-free extension of the logic BCK’, *Mathematica Japonica* 32(1): 149-169, 1987.

[24]

White, R., ‘A consistent theory of attributes in a logic without contraction’, *Studia Logica* 52: 113-142, 1993.