[1]
V.M. Abramov, A large closed queueing network with autonomous service and bottleneck, Queueing Systems 35 (2000) 23-54.
[2]
V.M. Abramov, Some results for large closed queueing networks with and without bottleneck: Upand down-crossings approach, Queueing Systems 38 (2001) 149-184.
[3]
S.V. Anulova and R.Sh. Liptser, Diffusion approximation for processes with normal reflection, Theory Probab. Appl. 35 (1990) 413-423.
[4]
A.A. Borovkov, Stochastic Processes in Queueing Theory(Springer, Berlin, 1976).
[5]
A.A. Borovkov, Asymptotic Methods in Queueing Theory(Wiley, New York, 1984).
[6]
Y.-J. Chao, Weak convergence of a sequence of semimartingales to a diffusion with discontinuous drift and diffusion coefficients, Queueing Systems 42 (2002) 153-188.
[7]
H. Chen and A. Mandelbaum, Discrete flow networks: Bottleneck analysis and fluid approximations, Math. Oper. Res. 16 (1991) 408-446.
[8]
H. Chen and A. Mandelbaum, Discrete flow networks: Diffusion approximations and bottlenecks, Ann. Probab. 19 (1991) 1463-1519.
[9]
C. Dellacherie, Capacités et Processus Stochastiques(Springer, Berlin, 1972).
[10]
C. Knessl, B.J. Matkovsky, Z. Schuss and C. Tier, Asymptotic analysis of a state dependent M/G/1 queueing system, SIAM J. Appl. Math. 46(3) (1986) 483-505.
[11]
C. Knessl, B.J. Matkovsky, Z. Schuss and C. Tier, The two repairmen problem: A finite source M/G/2 queue, SIAM J. Appl. Math. 47(2) (1987) 367-397.
[12]
C. Knessl, B.J. Matkovsky, Z. Schuss and C. Tier, A Markov modulated M/G/1 queue I. Stationary distribution, Queueing Systems 1 (1987) 355-374.
[13]
C. Knessl, B.J.Matkovsky, Z. Schuss and C. Tier, A Markov modulated M/G/1 queue II. Busy period and time for buffer overflow, Queueing Systems 1 (1987) 375-399.
[14]
C. Knessl, B.J. Matkovsky, Z. Schuss and C. Tier, Busy period distribution in state dependent queues, Queueing Systems 2 (1987) 285-305.
[15]
C. Knessl and C. Tier, Asymptotic expansions for large closed queueing networks, J. Assoc. Comput. Mach. 37 (1990) 144-174.
[16]
Y. Kogan, and R.Sh. Liptser, Limit non-stationary behavior of large closed queueing networks with bottlenecks, Queueing Systems 14 (1993) 33-55.
[17]
Y. Kogan, R.Sh. Liptser and M. Shenfild, State dependent Benês buffer model with fast loading and output rates, Ann. Appl. Probab. 5 (1995) 97-120.
[18]
Y. Kogan, R.Sh. Liptser and A.V. Smorodinskii, Gaussian diffusion approximation of closed Markov model of computer networks, Problems Inform. Transmission 22 (1986) 38-51.
[19]
T. Konstantopoulos, S.N. Papadakis and J. Walrand, Functional approximation theorems for controlled queueing systems, J. Appl. Probab. 31 (1994) 765-776.
[20]
E.V. Krichagina, R.Sh. Liptser and A.A. Puhalskii, Diffusion approximation for system with arrivals depending on queue and arbitrary service distribution, Theory Probab. Appl. 33 (1988) 114-124.
[21]
E.V. Krichagina and A.A. Puhalskii, A heavy traffic analysis of closed queueing system with
GI/8 service center, Queueing Systems 25 (1997) 235-280.
CrossRef[22]
N.V. Krylov and R. Liptser, On diffusion approximation with discontinuous coefficients, Stochastic Process. Appl. 102 (2002) 235-264.
[23]
R.Sh. Liptser, A large deviation problem for simple queueing model, Queueing Systems 14 (1993) 1-32.
[24]
R.Sh. Liptser and A.N. Shiryayev, Statistics of Random Processes, Vols. I, II (Springer, Berlin, 1977/1978).
[25]
R.Sh. Liptser and A.N. Shiryayev, Theory of Martingales(Kluwer, Dordrecht, 1989).
[26]
A. Mandelbaum and W.A. Massey, Strong approximations for time dependent queues, Math. Oper. Res. 20 (1995) 33-64.
[27]
A. Mandelbaum, W.A. Massey and M.I. Reiman, Strong approximations for Markovian service networks, Queueing Systems 30 (1998) 149-201.
CrossRef[28]
A. Mandelbaum and G. Pats, State-dependent queues: approximations and applications, in: IMA Volumes in Mathematics and Its Applications, eds. F.P. Kelly and R.J. Williams, Vol. 71 (Springer, Berlin, 1995) pp. 239-282.
[29]
A. Mandelbaum and G. Pats, State-dependent stochastic networks, Part I. Approximations and applications with continuous diffusion limits, Ann. Appl. Probab. 8 (1998) 569-646.
[30]
G. Pólya and G. Szegö, Aufgaben und Lehrsatze aus der Analysis, Erster Band: Reihen, Integralrechnung, Functionentheorie(Springer, Berlin, 1964).
[31]
M.I. Reiman and B. Simon, A network of priority queues in heavy traffic: One bottleneck station, Queueing Systems 6 (1990) 33-58.
[32]
A.V. Skorokhod, Stochastic equations for diffusion processes in a bounded region, Theory Probab. Appl. 6 (1961) 264-274.
[33]
H. Tanaka, Stochastic differential equations with reflected boundary condition in convex regions, Hiroshima Math. J. 9 (1979) 163-177.
[34]
W. Whitt, Open and closed models for networks of queues, AT&T Bell. Lab. Tech. J. 63 (1984) 1911-1979.
[35]
R.J. Williams, On approximation of queueing networks in heavy traffic, in: Stochastic Networks. Theory and Application, eds. F.P. Kelly, S. Zachary and I. Ziedins (Oxford Univ. Press, Oxford, 1996) pp. 35-56.
[36]
R.J. Williams, An invariance principle for semimartingale reflecting Brownian motion in orthant, Queueing Systems 30 (1998) 5-25.
CrossRef[37]
R.J. Williams, Diffusion approximation for open multiclass queueing networks: Sufficient conditions involving state space collapse, Queueing Systems 30 (1998) 27-88.