[1]

V.M. Abramov, A large closed queueing network with autonomous service and bottleneck, Queueing Systems 35 (2000) 23-54.

[2]

V.M. Abramov, Some results for large closed queueing networks with and without bottleneck: Upand down-crossings approach, Queueing Systems 38 (2001) 149-184.

[3]

S.V. Anulova and R.Sh. Liptser, Diffusion approximation for processes with normal reflection, Theory Probab. Appl. 35 (1990) 413-423.

[4]

A.A. Borovkov, *Stochastic Processes in Queueing Theory*(Springer, Berlin, 1976).

[5]

A.A. Borovkov, *Asymptotic Methods in Queueing Theory*(Wiley, New York, 1984).

[6]

Y.-J. Chao, Weak convergence of a sequence of semimartingales to a diffusion with discontinuous drift and diffusion coefficients, Queueing Systems 42 (2002) 153-188.

[7]

H. Chen and A. Mandelbaum, Discrete flow networks: Bottleneck analysis and fluid approximations, Math. Oper. Res. 16 (1991) 408-446.

[8]

H. Chen and A. Mandelbaum, Discrete flow networks: Diffusion approximations and bottlenecks, Ann. Probab. 19 (1991) 1463-1519.

[9]

C. Dellacherie, *Capacités et Processus Stochastiques*(Springer, Berlin, 1972).

[10]

C. Knessl, B.J. Matkovsky, Z. Schuss and C. Tier, Asymptotic analysis of a state dependent *M/G/*1 queueing system, SIAM J. Appl. Math. 46(3) (1986) 483-505.

[11]

C. Knessl, B.J. Matkovsky, Z. Schuss and C. Tier, The two repairmen problem: A finite source *M/G/*2 queue, SIAM J. Appl. Math. 47(2) (1987) 367-397.

[12]

C. Knessl, B.J. Matkovsky, Z. Schuss and C. Tier, A Markov modulated *M/G/*1 queue I. Stationary distribution, Queueing Systems 1 (1987) 355-374.

[13]

C. Knessl, B.J.Matkovsky, Z. Schuss and C. Tier, A Markov modulated *M/G/*1 queue II. Busy period and time for buffer overflow, Queueing Systems 1 (1987) 375-399.

[14]

C. Knessl, B.J. Matkovsky, Z. Schuss and C. Tier, Busy period distribution in state dependent queues, Queueing Systems 2 (1987) 285-305.

[15]

C. Knessl and C. Tier, Asymptotic expansions for large closed queueing networks, J. Assoc. Comput. Mach. 37 (1990) 144-174.

[16]

Y. Kogan, and R.Sh. Liptser, Limit non-stationary behavior of large closed queueing networks with bottlenecks, Queueing Systems 14 (1993) 33-55.

[17]

Y. Kogan, R.Sh. Liptser and M. Shenfild, State dependent Benês buffer model with fast loading and output rates, Ann. Appl. Probab. 5 (1995) 97-120.

[18]

Y. Kogan, R.Sh. Liptser and A.V. Smorodinskii, Gaussian diffusion approximation of closed Markov model of computer networks, Problems Inform. Transmission 22 (1986) 38-51.

[19]

T. Konstantopoulos, S.N. Papadakis and J. Walrand, Functional approximation theorems for controlled queueing systems, J. Appl. Probab. 31 (1994) 765-776.

[20]

E.V. Krichagina, R.Sh. Liptser and A.A. Puhalskii, Diffusion approximation for system with arrivals depending on queue and arbitrary service distribution, Theory Probab. Appl. 33 (1988) 114-124.

[21]

E.V. Krichagina and A.A. Puhalskii, A heavy traffic analysis of closed queueing system with

*GI/*8 service center, Queueing Systems 25 (1997) 235-280.

CrossRef[22]

N.V. Krylov and R. Liptser, On diffusion approximation with discontinuous coefficients, Stochastic Process. Appl. 102 (2002) 235-264.

[23]

R.Sh. Liptser, A large deviation problem for simple queueing model, Queueing Systems 14 (1993) 1-32.

[24]

R.Sh. Liptser and A.N. Shiryayev, *Statistics of Random Processes*, Vols. I, II (Springer, Berlin, 1977/1978).

[25]

R.Sh. Liptser and A.N. Shiryayev, *Theory of Martingales*(Kluwer, Dordrecht, 1989).

[26]

A. Mandelbaum and W.A. Massey, Strong approximations for time dependent queues, Math. Oper. Res. 20 (1995) 33-64.

[27]

A. Mandelbaum, W.A. Massey and M.I. Reiman, Strong approximations for Markovian service networks, Queueing Systems 30 (1998) 149-201.

CrossRef[28]

A. Mandelbaum and G. Pats, State-dependent queues: approximations and applications, in: *IMA Volumes in Mathematics and Its Applications*, eds. F.P. Kelly and R.J. Williams, Vol. 71 (Springer, Berlin, 1995) pp. 239-282.

[29]

A. Mandelbaum and G. Pats, State-dependent stochastic networks, Part I. Approximations and applications with continuous diffusion limits, Ann. Appl. Probab. 8 (1998) 569-646.

[30]

G. Pólya and G. Szegö, *Aufgaben und Lehrsatze aus der Analysis, Erster Band: Reihen, Integralrechnung, Functionentheorie*(Springer, Berlin, 1964).

[31]

M.I. Reiman and B. Simon, A network of priority queues in heavy traffic: One bottleneck station, Queueing Systems 6 (1990) 33-58.

[32]

A.V. Skorokhod, Stochastic equations for diffusion processes in a bounded region, Theory Probab. Appl. 6 (1961) 264-274.

[33]

H. Tanaka, Stochastic differential equations with reflected boundary condition in convex regions, Hiroshima Math. J. 9 (1979) 163-177.

[34]

W. Whitt, Open and closed models for networks of queues, AT&T Bell. Lab. Tech. J. 63 (1984) 1911-1979.

[35]

R.J. Williams, On approximation of queueing networks in heavy traffic, in: *Stochastic Networks. Theory and Application*, eds. F.P. Kelly, S. Zachary and I. Ziedins (Oxford Univ. Press, Oxford, 1996) pp. 35-56.

[36]

R.J. Williams, An invariance principle for semimartingale reflecting Brownian motion in orthant, Queueing Systems 30 (1998) 5-25.

CrossRef[37]

R.J. Williams, Diffusion approximation for open multiclass queueing networks: Sufficient conditions involving state space collapse, Queueing Systems 30 (1998) 27-88.