, Volume 5, Issue 2, pp 131-144

Efficacy of Grid and Zone Soil Sampling Approaches for Site-Specific Assessment of Phosphorus, Potassium, pH, and Organic Matter

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Within-field variability of plant-available nutrients often results in different fertilizer requirements across a field. There is uncertainty concerning the efficacy of alternative sampling strategies suitable for site-specific management. This study compared various soil sampling approaches for P, K, pH, and organic matter (OM) in eight agricultural fields. Soil samples were collected using an intensive 0.2-ha grid-point procedure, and were used to compare less intensive sampling approaches. The approaches were based on 1.2–1.6-ha grid cells (Grid), soil series of digitized soil survey maps (SSM), soil series of detailed soil survey (1:12,000 scale) maps, elevation zones, and management zones based on various information layers (ZS). The approaches varied in reducing the within-unit soil-test variability and maximizing mean soil-test values across sampling units, but none was superior across all fields and nutrients. All approaches were less efficient for P and K than for pH or OM. The Grid and ZS approach were the most effective across all nutrients and fields. However, the Grid approach was more effective for P, the Grid and ZS approaches were better for K and pH, and the SSM and ZS approaches were better for OM. The ZS approach often resulted in fewer sampling zones than the Grid approach, which implies lower soil testing costs for producers, but required more knowledge and subjective judgement than a Grid approach to adapt it to field-specific conditions.