Pharmaceutical Research

, Volume 20, Issue 12, pp 1911-1916

Biophysical Evidence for His57 as a Proton-Binding Site in the Mammalian Intestinal Transporter hPepT1

  • Tomomi UchiyamaAffiliated withDepartment of Pharmaceutical Sciences, University of Southern California
  • , Ashutosh A. KulkarniAffiliated withDepartment of Pharmaceutical Sciences, University of Southern California
  • , Daryl L. DaviesAffiliated withDepartment of Molecular Pharmacology and Toxicology, University of Southern California
  • , Vincent H. L. LeeAffiliated withDepartment of Pharmaceutical Sciences, University of Southern California Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Purpose. The objective of this study was to provide direct evidence of the relative importance of the His57 residue present in transmembrane domain 2 (TMD 2) and the His121 residue in TMD 4 as proton-binding sites in human PepT1 (hPepT1) by using a novel mutagenesis approach.

Methods. His57 and His121 in hPepT1 were each mutated to alanine, arginine, or lysine individually to obtain H57A-, H57R-, H57K-, H121A-, H121R-, and H121K-hPepT1. H7A-hPepT1 was used as a negative control. [3H]Glycylsarcosine (Gly-Sar) uptake was measured 72 h posttransfection using HEK293 cells individually transfected with these mutated proteins. Steady-state I/V curves (−150 mV to +50 mV, holding potential −70 mV) were obtained by measuring 5 mM Gly-Sar-induced currents in oocytes expressing H57R- and H57K-hPepT1. Noninjected oocytes and wild-type hPepT1 (WT-hPepT1)-injected oocytes served as negative and positive controls, respectively.

Results. At pH 6.0, H57K-, H57R-, H121K-, and H121R-hPepT1 led to a 97%, 90%, 45%, and 75% decrease in [3H]Gly-Sar uptake into HEK293 cells, respectively. At pH 7.4, uptake in cells transfected with H57K- and H57R-hPepT1 was not significantly different from that at pH 6.0, whereas cells expressing H121R- and H121K-hPepT1 showed 56% and 65% decrease, respectively, compared to that at pH 6.0. In oocytes expressing H57R-hPepT1, steady-state currents induced by 5 mM Gly-Sar increased with increasing pH (Imax= 300 nA at pH 8.5), suggesting the binding of protons to H57R. No such trend was observed in oocytes injected with H57K, H121R, and H121K cRNA.

Conclusions. H57R-hPepT1 is able to bind protons at a relatively basic pH, resulting in facilitation of transport of Gly-Sar by hPepT1 at higher pH. Our novel approach provides direct evidence that His57 is a principal proton-binding site in hPepT1.

proton-binding site dipeptide transporter histidine site-directed mutagenesis two-electrode voltage clamp Xenopus oocyte HEK293 cells