, Volume 34, Issue 3, pp 323-346

A Universal Definition of Life: Autonomy and Open-Ended Evolution

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Life is a complex phenomenon that not only requires individual self-producing and self-sustaining systems but also a historical-collective organization of those individual systems, which brings about characteristic evolutionary dynamics. On these lines, we propose to define universally living beings as autonomous systems with open-ended evolution capacities, and weclaim that all such systems must have a semi-permeable active boundary (membrane), an energy transduction apparatus (set of energy currencies) and, at least, two types of functionally interdependent macromolecular components (catalysts and records).The latter is required to articulate a `phenotype-genotype' decoupling that leads to a scenario where the global network ofautonomous systems allows for an open-ended increase in the complexity of the individual agents. Thus, the basic-individual organization of biological systems depends critically on being instructed by patterns (informational records) whose generationand reliable transmission cannot be explained but take into account the complete historical network of relationships amongthose systems. We conclude that a proper definition of life should consider both levels, individual and collective: livingsystems cannot be fully constituted without being part of theevolutionary process of a whole ecosystem. Finally, we alsodiscuss a few practical implications of the definition fordifferent programs of research.