Numerical Algorithms

, Volume 35, Issue 1, pp 81–90

Continued Fractions for Rogers–Szegö Polynomials

  • Qing-Hu Hou
  • Alain Lascoux
  • Yan-Ping Mu
Article

DOI: 10.1023/B:NUMA.0000016604.14688.21

Cite this article as:
Hou, QH., Lascoux, A. & Mu, YP. Numerical Algorithms (2004) 35: 81. doi:10.1023/B:NUMA.0000016604.14688.21

Abstract

We evaluate different Hankel determinants of Rogers–Szegö polynomials, and deduce from it continued fraction expansions for the generating function of RS polynomials. We also give an explicit expression of the orthogonal polynomials associated to moments equal to RS polynomials, and a decomposition of the Hankel form with RS polynomials as coefficients.

q-binomial coefficientsRogers–Szegö polynomialscontinued fractions

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Qing-Hu Hou
    • 1
  • Alain Lascoux
    • 1
    • 2
  • Yan-Ping Mu
    • 1
  1. 1.Center for Combinatorics, LPMCNankai UniversityTianjinP. R. China
  2. 2.CNRS, Institut Gaspard MongeUniversité de Marne-la-ValléeMarne-la-Vallée CedexFrance