Badea, L., & Stanciu, M. (1999). Refinement operators can be (weakly) perfect. In *Proceedings of the NinthInternational Workshop on Inductive Logic Programming* (pp. 21–32). Springer-Verlag.

Boström, H., & Asker, L. (1999). Combining divide-and-conquer and separate-and-conquer for efficient and effective rule induction. In *Proceedings of the Ninth International Workshop on Inductive Logic Programming* (pp. 33–43). Springer-Verlag.

Ceci, M., Appice, A., & Malerba, D. (2003). Mr-SBC: A multi-relational naïve Bayes classifier. In *Proceedings of the Seventh European Conference on Principles and Practice of Knowledge Discovery in Databases* (pp. 95–106). Springer-Verlag.

Cussens, J. (2001). Parameter estimation in stochastic logic programs.

*Machine Learning,* 43, 245–271.

Google ScholarDate, C. (1995). *An introduction to database systems*. Addison Wesley.

Dehaspe, L. (1997). Maximum entropy modeling with clausal constraints. In *Proceedings of the Seventh International Workshop on Inductive Logic Programming* (pp. 109–124). Springer-Verlag.

Dietterich, T., Lathrop, R., & Lozano-Perez, T. (1997). Solving the multiple instance problem with axis-parallel rectangles.

*Artificial Intelligence*, 89, 31–71.

Google ScholarDol?sak, B., & Muggleton, S. (1992). The application of inductive logic programming to finite-element mesh design. In S. Muggleton (Ed.), *Inductive logic programming*. Academic Press.

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss.

*Machine Learning,* 29, 103–130.

Google ScholarD?zeroski, S., Schulze-Kremer, S., Heidtke, K., Siems, K., Wettschereck, D., & Blockeel, H. (1998). Diterpene structure elucidation from 13C NMR spectra with inductive logic programming.

*Applied Artificial Intelligence,*12, 363–383.

Google ScholarD?zeroski, S., & Lavrač, N. (Eds.). (2001). *Relational data mining*. Springer-Verlag.

Fawcett, T. (2003). *ROC graphs: Notes and practical considerations for data mining researchers*. Technical report HPL-2003-4. HP Laboratories, Palo Alto, CA, USA. Available at http://www.hpl.hp.com/techreports/ 2003/HPL-2003-4.pdf.

Flach, P., Giraud-Carrier, C., & Lloyd, J. (1998). Strongly typed inductive concept learning. *Proceedings of the Eighth International Conference on Inductive Logic Programming* (pp. 185–194). Springer-Verlag.

Flach, P., & Lachiche, N. (1999). 1BC: A first-order Bayesian classifier. In *Proceedings of the Ninth International Workshop on Inductive Logic Programming* (pp. 92–103). Springer-Verlag.

Flach, P. (1999). Knowledge representation for inductive learning. *Symbolic and Quantitative Approaches toReasoning and Uncertainty* (pp. 160–167). Springer-Verlag.

Flach, P., Gyftodimos, E., & Lachiche, N. (to appear). Probabilistic reasoning with terms. *Linkoping Electronic Articles in Computer and Information Science*. Available at http://www.ida.liu.se/ext/epa/cis/2002/011/tcover.html.

Flach, P., & Lachiche, N. (2001). Confirmation-guided discovery of first-order rules with tertius.

*Machine Learning*, 42, 61–95.

Google ScholarGärtner, T., Lloyd, J., & Flach, P. (2004). Kernels and distances for structured data.

*Machine Learning*, 57:3, 205–232.

Google ScholarGetoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001). Learning probabilistic relational models. In S. D?zeroski and N. Lavrač (Eds.), *Relational data mining*. Springer-Verlag.

Gyftodimos, E., & Flach, P. (2003). Hierarchical Bayesian networks: an approach to classification and learning for structured data. In *Proceedings of the Work-in-Progress Track at the Thirteenth International Conference on Inductive Logic Programming* (pp. 12–21). Department of Informatics, University of Szeged.

Hand, D., & Till, R. (2001). A simple generalisation of the Area Under the ROC Curve for multiple class classification problems.

*Machine Learning*, 45, 171–186.

Google ScholarJohn, G., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In *Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence* (pp. 338–345). Morgan Kaufmann.

Kersting, K., & De Raedt, L. (2000). Bayesian logic programs. In

*Proceedings of theWork-in-Progress Track at the Tenth International Conference on Inductive Logic Programming* (pp. 138–155). CEURWorkshop Proceedings Series, Vol. 35.

Google ScholarKersting, K., & De Raedt, L. (2001). Towards combining inductive logic programming with Bayesian networks. In *Proceedings of the Eleventh International Conference on Inductive Logic Programming* (pp. 118–131). Springer-Verlag.

Knobbe, A., de Haas, M., & Siebes, A. (2001). Propositionalisation and aggregates. In *Proceedings of the Fifth European Conference on Principles of Data Mining and Knowledge Discovery* (pp. 277–288). Springer-Verlag.

Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S. D?zeroski and N. Lavrač (Eds.), *Relational data mining*. Springer-Verlag.

Krogel, M.-A., & Wrobel, S. (2001). Transformation-based learning using multirelational aggregation. In *Proceedings of the Eleventh International Conference on Inductive Logic Programming* (pp. 142–155). Springer-Verlag.

Lachiche, N., & Flach, P. (2002). 1BC2: a true first-order Bayesian classifier. In *Proceedings of the Twelfth International Conference on Inductive Logic Programming* (pp. 133–148). Springer-Verlag.

Lachiche, N., & Flach, P. (2003). Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves. In *Proceedings of the Twentieth International Conference on Machine Learning* (pp. 416–423). AAAI Press.

Lavrač, N., & Flach, P. (2001). An extended transformation approach to inductive logic programming.

*ACM Transactions on Computational Logic*, 2, 458–494.

Google ScholarLavrač, N., Železný, F., & Flach, P. (2002). RSD: Relational subgroup discovery through first-order feature construction. In *Proceedings of the Twelfth International Conference on Inductive Logic Programming* (pp. 149–165). Springer-Verlag.

Lloyd, J. (1999). Programming in an integrated functional and logic language. *Journal of Functional and Logic Programming*, *1999*.

Lloyd, J. (2003). *Logic for learning: learning comprehensible theories from structured data*. Springer-Verlag.

Lu, Q., & Getoor, L. (2003). Link-based classification. In *Proceedings of the Twentieth International Conference on Machine Learning* (pp. 496–503). AAAI Press.

Muggleton, S. (Ed.). (1992). *Inductive logic programming*. Academic Press.

Muggleton, S. (1995). Inverse entailment and Progol.

*New Generation Computing,*13, 245–286.

Google ScholarMuggleton, S. (1996). Stochastic logic programs. In L. De Raedt (Ed.), *Advances in inductive logic programming*. IOS Press.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.

*Journal of Logic Programming*, 19/20, 629–679.

Google ScholarMuggleton, S., Srinivasan, A., King, R., & Sternberg, M. (1998). Biochemical knowledge discovery using Inductive Logic Programming. In *Proceedings of the first International Conference on Discovery Science* (pp. 326–341). Springer-Verlag.

Pompe, U., & Kononenko, I. (1995). Naive Bayesian classifier within ILP-R. In *Proceedings of the Fifth International Workshop on Inductive Logic Programming* (pp. 417–436). Department of Computer Science, Katholieke Universiteit Leuven.

Rouveirol, C. (1994). Flattening and saturation: Two representation changes for generalization.

*Machine Learning,* 14, 219–232.

Google ScholarSato, T., & Kameya, Y. (1997). Prism: A symbolic-statistical modeling language. In *Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence* (pp. 1330–1335). Morgan Kaufmann.

Sato, T., & Kameya, Y. (2001). Parameter learning of logic programs for symbolic-statistical modeling.

*Journal of Artificial Intelligence Research*, 15, 391–454.

Google ScholarSlattery, S., & Craven, M. (1998). Combining statistical and relational methods for learning in hypertext domains. In *Proceedings of the Eighth International Conference on Inductive Logic Programming* (pp. 38–52). Springer-Verlag.

Srinivasan, A., Muggleton, S., King, R., & Sternberg, M. (1994). Mutagenesis: ILP experiments in a nondeterminate biological domain. In *Proceedings of the Fourth International Workshop on Inductive Logic Programming* (pp. 217–232). Gesellschaft für Mathematik und Datenverarbeitung MBH.

Taskar, B., Segal, E., & Koller, D. (2001). Probabilistic clustering in relational data. In *Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence* (pp. 870–87). Morgan Kaufmann.