Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation.

*Neural Computation, 15:6*, 1373–1396.

Google ScholarBelkin, M., Matveeva, I., & Niyogi, P. (2003). Regression and regularization on large graphs. University of Chicago Computer Science, Technical Report TR-2003-11.

Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using graph mincuts. In *Proceedings of the International Conference on Machine Learning*.

Bousquet, O., & Elisseeff, A. (2001). Stability and generalization. *Journal of Machine Learning Research*.

Buser, P. (1982). A note on the isoperimetric constant. *Ann. Sci. Ec. Norm. Sup. 15*.

Castelli, V., & Cover, T. M. (1995). On the exponential value of labeled samples. *Pattern Recognition Letters, 16*.

Cheeger, J. (1970). A lower bound for the smallest eigenvalue of the laplacian. In R.C. Gunnings (Ed.), *Problems in analysis*. Princeton University Press.

Chapelle, O., Weston, J., & Scholkopf, B. (2003). Cluster kernels for semi-supervised learning. *Advances in Neural Information Processing Systems*.

Cucker, F., & Smale, S. (2001). On the mathematical foundations of learning.

*Bulletin of the AMS, 39*, 1–49.

Google ScholarChung, F. R. K. (1997). *Spectral graph theory*. Regional Conference Series in Mathematics, number 92.

Chung, F. R. K., Grigor'yan, A., & Yau, S.-T. (2000). Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs.

*Communications on Analysis and Geometry, 8*, 969–1026.

Google ScholarHaykin, S. (1999). *Neural networks, A comprehensive foundation*. Prentice Hall.

Joachims, T. (2003). Transductive learning via spectral graph partitioning. In *Proceedings of the International Conference on Machine Learning*.

Kannan, R., Vempala, S., & Adrian Vetta. (2000). On clusterings: Good, bad and spectral. In *Proceedings of the 41st Annual Symposium on Foundations of Computer Science*.

Kondor, R., & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete input spaces. In *Proceedings of the International Conference on Machine Learning*.

Kutin, S., & Niyogi, P. (2002). Almost everywhere algorithmic stability and generalization error. In *Proceedings of Uncertainty in Artificial Intelligence*.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled data. *Machine Learning, 39:2/3*.

Rosenberg, S. (1997). *The Laplacian on a riemmannian manifold*. Cambridge University Press.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. *Science, 290*.

Schölkopf, B., Smola, A., & Mller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation, 10:5*.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:8*.

Smola, A., & Kondor, R. (2003). Kernels and regularization on graphs. In *The Sixteenth Annual Conference on Learning Theory/The Seventh Workshop on Kernel Machines*.

Szummer, M., & Jaakkola, T. (2002). Partially labeled classification with Markov random walks. *Advances in Neural Information Processing Systems*.

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *Science, 290*.

Tikhonov, A. N., & Arsenin, V. Y. (1977).

*Solutions of ill-posed problems*. W. H. Winston, Washington, D.C.

Google ScholarWahba, G. (1990). Spline models for observational data. *Society for Industrial and Applied Mathematics*.

Zhou, D., Bousquet, O., Lal, T.N., Weston, J., & Schölkopf, B. (2003). Learning with local and global consistency, Max Planck Institute for Biological Cybernetics Technical Report.

Zhu, X., Lafferty, J., & Ghahramani, Z. (2003). Semi-supervised learning using Gaussian fields and harmonic functions. In *Proceedings of the International Conference on Machine Learning*.