Berthold, M., & Hand, D. (1999). *Intelligent data analis-An introduction*.Springer Verlag.

Bhattacharyya, G., & Johnson, R.

*(1977).Statistical concepts and methods*.New York: John Willey & Sons.

Google ScholarBlake, C., Keogh, E., & Merz, C. **(999).** ICI repository of machine learning databases.

Brain, D., & Webb, G. (2002). Th need ifor low bias algorithms in classification learning from large data sets. In T. Elomaa, H. Mannila, & H,. Tiionen (Eds.), *Principles of data mining and knowledge discovery PKDD-02,* LNAI 2431 (pp. 62–73). Springer Verlag.

Breiman, L. (1996). Baging’predictors.

*Machine Learning, 24*,123–140.

Google ScholarBreiman, L. (1998). cing:classifiers.

*The Annals of Statistics, 26:3,*801–849.

CrossRefGoogle ScholarBreiman, L., Friedman J., Olshen, R., & Stone, C. (1984). *Classification and regression trees*. Wadsworth International Group.

Brodley, C. E. (1995). Recursive automatic bias selection for classifier construction.

*Machine Learning, 20,63–94.*
Google ScholarBrodley, C. E.,::& Utgoff, P. E. (1995). Multivariate decision trees.

*Machine Learning, 19,*45–77.

Google ScholarFrank, E., Wang, Y, Inglis, S., Holmes, G., & Witten, I. (1998). Using model trees for classification.

*Machine Learning,32,*63–82.

CrossRefGoogle ScholarFrank, E., & Witten, H. (1998). Generating accurate rule sets without global optimization. In J. Shavlik (Ed.), *Proceedings of the 15th international conference-ICML’98* (pp. 144–151). Morgan Kaufmann.

Gama, J. (1997). Probabilistic linear tree. In D. Fisher (Ed.), *Machine learning Proc. of the 14th international conference* (pp. 134–142). Morgan Kaufmann.

Gama, J. (2000). A linear-bayes classifier. In C. Monard, & J. Sichman *(Eds.),Advances on artificial intelligence-SBIA2000*,LNAI 1952 (pp. 269–279). Springer Verlag.

Gama, J., & Brazdil, P. (2000). Cascade generalization.

*Machine Learning 41,*315–343.

CrossRefGoogle ScholarGeman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilema.

*Neural Com-putation, 4,*1–58.

Google ScholarIhaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics.

*Journal of Computational and Graphical Statistics, 5:3,*299–314.

Google ScholarKaralic, A. (1992). Employing linear regression in regression tree leaves. In B. Neumann (Ed.), *European confer-ence on artificial intelligence* (pp. 440–441). John Wiley & Sons.

Kim, H., & Loh, W. (2001). Classification trees with unbiased multiway splits.

*Journal of theAmerican Statistical Association,96, 589–604.*
CrossRefGoogle ScholarKim, H., & Loh, W.-Y. (2003). Classification trees with bivariate linear discriminant node models.

*Journal of Computational and Graphical Statistics, 12:3,*512–530.

CrossRefMathSciNetGoogle ScholarKohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision tree hybrid. In *Proc. of the 2nd international conference on knowledge discovery and data mining* (pp. 202–207). AAAI Press.

Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition for zero-one loss functions. In L. Saitta (Ed.), *Machine learning, Proc. of the 13th international conference.*(pp. 275–283). Morgan Kaufmann.

Kononenko, I., Cestnik, B., & Bratko, I. (1988). *Assistant professional user’s guide*.Technical report, Jozef Stefan Institute.

Li, K. C., Lue, H., & Chen, C. (2000). Interactive tree-structured regression via principal Hessians direction.

*Journal of the American Statistical Association, 95,* 547–560.

Google ScholarLoh, W., & Shih, Y. (1997). Split selection methods for classification trees.

*Statistica Sinica,7,* 815–840.

Google ScholarLoh, W., & Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminantanalysis.

*Journal of the American Statistical Association, 83,* 715–728.

Google ScholarMcLachlan, G. (1992).

*Discriminant analysis and statistical pattern recognition*. New York: Wiley and Sons.

Google ScholarMitchell, T. (1997). *Machine learning*.MacGraw-Hill Companies, Inc.

Murthy, S., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique decision trees.

*Journal ofArtificial Inteligence Research,2,* 1–32.

Google ScholarPerlich, C., Provost,.F., & Simonoff, J. (2003). Tree induction vs. logistic regression: A learning-curve analysis.

*Journal of Machine Learning Research,4,* 211–255.

CrossRefGoogle ScholarQuinlan, R. (1992). Learning with continuous classes. In Adams, & Steling (Eds.), *5th Australianjoint conference on artificial intelligence.*(pp. 343–348). World Scientific.

Quinlan, R. (1993a). *C4.5: Programs for machine learningiMorgan Kaufmann* Publishers, Inc.

Quinlan, R. (1993b). Combining instance-based and model-based learning. In P. Utgoff (Ed.), *Machine learning, proceedings of the 10th international conference* (pp*.*236–243). Morgan Kaufmann.

Sahami, M. (1995). Generating neural networks though!the induction of threshold logic unit trees. In *Proceedings of the first international IEEE symposium qn intelligence in neural and biological systems.*(pp. 108–115). IEEE Computer Society.

Seewald, A., Petrak, J., & Widmer,G. (2001). Hybrid decision tree learners with alternative leaf classifiers: An empirical study. In *Proceedingi the 14th FLAIRS conference.* (pp.407–411). AAAI Press.

Todorovski, L., & Dzeroski S. (2003). Combining classifiers with meta decision trees.

*Machine Learning, 50,* 223–249.

CrossRefGoogle ScholarTorgo, L. (1997). Functional models for regression tree leaves. In D. Fisher (Ed.), *Machine learning, proceedings of the 14th iternational’conference.*(pp. 385–393). Morgan Kaufmann.

Torgo, L. (2000). Partial linear trees. In P. Langley (Ed.), *Machine learning, proceedings of the 17th international conference.*(pp. 1007–1014). Morgan Kaufmann.

Utgoff, P. (1988). Percepton trees-A case study in hybrid conceptr epresentation. In *Proceedings of the seventh national conference on artificial intelligence.*(pp. 601–606). AAAI Press.

Utgoff, P., & Brodley, C. (1991). *Linear machine decision trees*. Coins technical report, 91–10, University of Massachusetts.

Witten, I., & Frank, E. (2000). *Data mining: Practical machine learning tools and techniques with Java impleminentations*. Morgan Kaufmann Publishers

Wolpert, D. (1992). Stacked generalization.

*Neural Networks (vol. 5,* pp. 241–260). Pergamon Press.

Google Scholar