, Volume 19, Issue 6, pp 631-646

A multi-scale assessment of human and environmental constraints on forest land cover change on the Oregon (USA) coast range

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Human modification of forest habitats is a major component of global environmental change. Even areas that remain predominantly forested may be changed considerably by human alteration of historical disturbance regimes. To better understand human influences on the abundance and pattern of forest habitats, we studied forest land cover change from 1936 to 1996 in a 25 000 km2 landscape in the Oregon (USA) Coast Range. We integrated historical forest survey data and maps from 1936 with satellite imagery and GIS data from 1996 to quantify changes in major forest cover types. Change in the total area of closed-canopy forests was relatively minor, decreasing from 68% of the landscape in 1936 to 65% in 1996. In contrast, large-conifer forests decreased from 42% in 1936 to 17% in 1996, whereas small-conifer forests increased from 21% of the landscape in 1936 to 39% in 1996. Linear regression models were used to predict changes in the proportion of large conifer forest as a function of socioeconomic and environmental variables at scales of subbasins (mean size = 1964 km2, n=13), watersheds (mean size = 302 km2, n=83), and subwatersheds (mean size = 18 km2, n=1325). The proportion of land in private ownership was the strongest predictor at all three spatial scales (partial R2 values 0.57–0.76). The amounts of variation explained by other independent variables were comparatively minor. Results corroborate the hypothesis that differing management regimes on private and public ownerships have led to different pathways of landscape change. Furthermore, these distinctive trajectories are consistent over a broad domain of spatial scales.