1.

W. G. Aiello and H. I. Freedman, "A time-delay model of single species growth with stage structure," *Math. Biosci*., **101**, 139-153 (1990).

2.

D. Aikman and G. Hewitt, "An experimental investigation of the rate and form of dispersal in grasshoppers," *J. Appl. Ecol*., **9**, 807-817 (1972).

3.

D. G. Aronson, "The asymptotic speed of a propagation of a simple epidemic," *Res. Notes Math*., **14**, 1-23 (1977).

4.

D. G. Aronson and H. F. Weinberger, "Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation," *Lect. Notes Math*., **446, 5-49** (1975).

5.

D. G. Aronson and H. F. Weinberger, "Multidimensional nonlinear diffusion arising in population genetics," *Adv. Math*., **30**, 33-76 (1978).

6.

P. B. Ashwin, M. V. Bartuccelli, T. J. Bridges, and S. A. Gourley, "Travelling fronts for the KPP equation with spatio-temporal delay," *Z. Angew. Math. Phys*., **53**, 103-122 (2002).

7.

N. F. Britton, *Reaction-Diffusion Equations and Their Applications to Biology*, Academic Press, New York (1986).

8.

N. F. Britton, "Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model," *SIAM J. Appl. Math*., **50**, 1663-1688 (1990).

9.

S. N. Chow, X. B. Lin, and J. Mallet-Paret, "Transition layers for singularly perturbed delay differ-ential equations with monotone nonlinearities," *J. Dyn. Differ. Equations*, **1**, 3-43 (1989).

10.

M. G. Crandall and P. H. Rabinowitz, "Mathematical theory of bifurcation," In: C. Bardos, D. Bessis, and D. Reidel (Eds.), *Bifurcation Phenomena in Mathematical Physics and Related Topics, Dordrecht* (1980), pp. 3-46.

11.

J. M. Cushing, *Integrodifferential Equations and Delay Models in Population Dynamics*, Springer-Verlag, Heidelberg (1977).

12.

N. Dance and P. Hess, "Stability of fixed points for order-preserving discrete-time dynamical sys-tems," *J. Reine Angew. Math*., **419**, 125-139 (1991).

13.

O. Diekmann, "Thresholds and traveling waves for the geographical spread of infection," *J. Math. Biol*., **69**, 109-130 (1978).

14.

O. Diekmann, "Run for your life, a note on the asymptotic speed of propagation of an epidemic," *J. Differ. Equations*, **33**, 58-73 (1979).

15.

T. Faria, W. Huang, and J. H. Wu, *Traveling wave solutions for time delayed reaction-diffusion equations with non-local response*, Preprint (2002).

16.

J. Fort and V. Méndez, "Wavefronts in time-delayed reaction-diffusion systems. Theory and compar-ison to experiment," *Rep. Progr. Phys*., **65**, 895-954 (2002).

17.

H. Huang, J. Longeway, T. Vieira, and J. H. Wu, "Aggregation and heterogeneity from the nonlin-ear dynamic interaction of birth, maturation and spatial migration," *Nonlinear Anal., Real World Applications*, In press (2002).

18.

R. A. Fisher, "The advance of advantageous genes," *Ann. Eugenics*, **7**, 355-369 (1937).

19.

J. Furter and M. Grinfeld, "Local vs. nonlocal interactions in population dynamics," *J. Math. Biol*., **27**, 65-80 (1989).

20.

M. Gander, M. Mei, G. Schmidt, and J. W.-H. So, *Stability of traveling waves for a nonlocal time-delayed reaction-diffusion equation*, Preprint (2002).

21.

L. Glass and M. C. Mackey, "Oscillations and chaos in physiological control systems," *Science*, **197**, 287-289 (1977).

22.

L. Glass and M. C. Mackey, "Pathological conditions resulting from instabilities in physiological control systems," *Ann. N.Y. Acad. Sci*., **316**, 214-235 (1979).

23.

K. Gopalsamy, *Stability and Oscillations in Delay Differential Equations of Population Dynamics*, Kluwer, Dordrecht (1992).

24.

S. A. Gourley, "Traveling front solutions of a nonlocal Fisher equation," *J. Math. Biol*., **41**, 272-284 (2000).

25.

S. A. Gourley and N. F. Britton, "Instability of travelling wave solutions of a population model with nonlocal effects," *IMA J. Appl. Math*., **51**, 299-310 (1993).

26.

S. A. Gourley and N. F. Britton, "A predator prey reaction diffusion system with nonlocal effects," *J. Math. Biol*., **34**, 297-333 (1996).

27.

S. A. Gourley and M. V. Bartuccelli, "Parameter domains for instability of uniform states in systems with many delays," *J. Math. Biol*., **35**, 843-867 (1997).

28.

S. A. Gourley and Y. Kuang, "Wavefronts and global stability in a time-delayed population model with stage structure," *Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci*., To appear (2002).

29.

S. A. Gourley and S. Ruan, "Dynamics of the diffusive Nicholson's blowflies equation with distributed delays," *Proc. R. Soc. Edinburgh, Sect. A., Math*., **130**, 1275-1291 (2000).

30.

S. A. Gourley and J. W. H. So, "Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain," *J. Math. Biol*., **44**, 49-78 (2002).

31.

S. A. Gourley and M. A. J. Chaplain, "Travelling fronts in a food-limited population model with time delay," *Proc. R. Soc. Edinb., Sect. A., Math*., **132**, 75-89 (2002).

32.

W. S. C. Gurney, S. P. Blythe, and R. M. Nisbet, "Nicholson's blowflies revisited," *Nature*, **287**, 17-21 (1980).

33.

K. Kolmogoroff, I. Petrovsky, and N. Piscounoff, "´ Etude de l'équations de la diffusion avec croissance de la quantité et son application a un probléme biologique," *Bull. Univ. Moscow, Ser. Internat. Sec*., **1**, No. 6, 1-25 (1937).

34.

N. Kopell and L. N. Howard, "Plane wave solutions to reaction-diffusion equations," *Stud. Appl. Math*., **52**, 291-328 (1973).

35.

Y. Kuang, "Delay differential equations with applications in population dynamics," In: *Mathematics in Science and Engineering*, Vol. 191, Academic Press, New York (1993).

36.

S. A. Levin, "Dispersion and population interactions," *Amer. Natur*., **108**, 207-228 (1974).

37.

S. A. Levin, "Spatial patterning and the structure of ecological communities," In: *Some Mathematical Questions in Biology VII*, Vol. 8, Am. Math. Soc., Providence, R.I. (1976), pp. 1-36.

38.

S. A. Levin, "Population models and community structure in heterogeneous environments," In: T. G. Hallam and S. A. Levin (Eds.) *Mathematical Ecology*, Springer-Verlag, New York (1986), pp. 295-321.

39.

D. Liang and J. H. Wu, *Traveling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects*, Preprint (2002).

40.

S. Ma and J. H. Wu, *Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation*, Preprint (2002).

41.

N. MacDonald, "Time lags in biological models," *Lect. Notes Biomath*., **27** (1978).

42.

J. Mallet-Paret, "The Fredholm alternative for functional differential equations of mixed type," *J. Dyn. Differ. Equations*, **11**, 1-47 (1999).

43.

H. Matano, "Existence of nontrivial unstable sets for equilibriums of strongly order preserving sys-tems," *J. Fac. Sci., Tokyo Univ*., **30**, 645-673 (1984).

44.

R. H. Martin and H. Smith, "Abstract functional differential equations and reaction-diffusion sys-tems," *Trans. Am. Math. Soc*., **321**, 1-44 (1990).

45.

R. M. May, *Stability and Complexity in Model Ecosystems*, Princeton University Press, Princeton (1975).

46.

M. Mei, J. W.-H. So, M. Li, and S. Shen, *Stability of traveling waves for the Nicholson's blowflies equation with diffusion*, Preprint (2002).

47.

M. C. Memory, "Bifurcation and asymptotic behaviour of solutions of a delay-differential equation with diffusion," *SIAM J. Math. Anal*., **20**, 533-546 (1989).

48.

J. A. J. Metz and O. Diekmann, *The Dynamics of Physiologically Structured Populations*, Springer-Verlag, New York (1986).

49.

K. Mischaikow, H. Smith, and H. R. Thieme, "Asymptotically autonomous semiflows: chain recur-rence and Lyapunov functions," *Trans. Am. Math. Soc*., **347**, 1669-1685 (1995).

50.

J. D. Murray, *Mathematical Biology*, Springer, Berlin-Heidelberg-New York (1993).

51.

A. J. Nicholson, "The self adjustment of populations to change," *Cold Spring Harb. Symp. Quant. Biol*., **22**, 153-173 (1957).

52.

A. Okubo, "Dynamical aspects of animal grouping: swarms, schools, flocks and herds," *Adv. Biophys*., **22**, 1-94 (1986).

53.

E. C. Pielou, *Introduction to Mathematical Ecology*, Wiley, New York (1969).

54.

P. Polacik, "Existence of unstable sets for invariant sets in compact semiflows, Applications in order-preserving semiflows," *Commentat. Math. Univ. Carolin*., **31**, 263-276 (1990).

55.

R. Redlinger, "Existence theorems for semilinear parabolic systems with functionals," *Nonlinear Anal*., **8**, 667-682 (1984).

56.

W. Ricker, "Stock and recruitment," *J. Fish. Res. Board Canada*, **211**, 559-663 (1954).

57.

K. Schaaf, "Asymptotic behavior and traveling wave solutions for parabolic functional differential equations," *Trans. Am. Math. Soc*., **302**, 587-615 (1987).

58.

N. Shigesada, "Spatial distribution of dispersing animals," *J. Math. Biol*., **9**, 85-96 (1980).

59.

F. E. Smith, "Population dynamics in Daphnia magna," *Ecology, 44*, 651-663 (1963).

60.

H. Smith, "Invariant curves for mappings," *SIAM J. Math. Anal*., **17**, 1053-1067 (1986).

61.

H. Smith, "Monotone dynamical systems, an introduction to the theory of competitive and cooper-ative system," In: *Math. Surv. Monogr*., **11** (1995).

62.

H. Smith and H. Thieme, "Monotone semiflows in scalar non-quasi-monotone functional differential equations," *J. Math. Anal. Appl*., **21**, 673-692 (1990).

63.

H. Smith and H. Thieme, "Strongly order preserving semiflows generated by functional differential equations," *J. Differ. Equations*, **93**, 332-363 (1991).

64.

J. W. H. So, J. H. Wu, and X. F. Zou, "A reaction-diffusion model for a single species with age structure I: Traveling wavefronts on unbounded domains," *Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci*., **457**, 1841-1853 (2001).

65.

J. W. H. So, J. H. Wu, and X. F. Zou, "Structured population on two patches: modeling dispersal and delay," *J. Math. Biol*., **43**, 37-51 (2001).

66.

J. W. H. So, J. H. Wu and Y. Yang, "Numerical Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation," *Appl. Math. Comput*., **111**, 53-69 (2000).

67.

J. W. H. So and Y. Yang, "Dirichlet problem for the diffusive Nicholson's blowflies equation," *J. Dif-fer. Equations*, **150**, 317-348 (1998).

68.

J. So and X. Zou, "Traveling waves for the diffusive Nicholson's blowflies equation," *Appl. Math. Comput*., **122**, 385-392 (2001).

69.

H. R. Thieme, "Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations," *J. Reine Angew. Math*., **306**, 94-121 (1979).

70.

H. R. Thieme and X. Q. Zhao, "A nonlocal delayed and diffusive predator-prey model," *Nonlinear Anal., Real World Applications*, **2**, 145-160 (2001).

71.

H. F. Weinberger, "Asymptotic behaviors of a model in population genetics," *Lect. Notes Math*., **648** (1978).

72.

P. X. Weng, H. X. Huang, and J. H. Wu, *Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction*, Preprint (2002).

73.

J. H. Wu, "Theory and applications of partial functional differential equations," *Appl. Math. Sci*., **119** (1996).

74.

J. H. Wu, "Introduction to neural dynamics and signal transmission delay," In: *De Gruyter Series in Nonlinear Analysis and Applications*, de Gruyter, Berlin (2002).

75.

J. H. Wu, H. Freedman, and R. Miller, "Heteroclinic orbits and convergence of order-preserving set-condensing semiflows with applications to integrodifferential equations," *J. Integral Equations Appl*., **7**, 115-133 (1995).

76.

J. H. Wu and X. F. Zou, "Traveling wave fronts of reaction-diffusion systems with delay," *J. Dyn. Differ. Equations*, **13**, 651-687 (2001).

77.

K. Yoshida, "The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology," *Hiroshima Math. J*., **12**, 321-348 (1982).

78.

X. Q. Zhao and J. H. Wu, *Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations*, To appear.

79.

X. F. Zou and J. H. Wu, "Existence of traveling wave fronts in delay reaction-diffusion system via monotone iteration method," *Proc. Am. Math. Soc*., **125**, 2589-2598 (1997).