1.

R. Adami, C. Bardos, F. Golse, and A. Teta, Towards a rigorous derivation of the cubic NLSe in dimension one, preprint (2003).

2.

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, *Solvable Models in Quantum Mechanics*(Springer-Verlag, New York, 1988).

3.

W. H. Aschbacher, J. Fröhlich, G. M. Graf, K. Schnee, and M. Troyer, Symmetry breaking regime in the nonlinear Hartree equation, *J. Math. Phys.*
**43**:3879–3891 (2002).

4.

R. D'Agosta and C. Presilla, States without a linear counterpart in Bose-Einstein condensates, *Phys. Rev. A*
**65**:043609 (2002).

5.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, *Rev. Modern Phys.*
**71**:463–512 (1999).

6.

L. Erdös and H. T. Yau, Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, *Adv. Theor. Math. Phys.*
**5**:1169–1205 (2001).

7.

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, *J. Funct. Anal.*
**69**:397–408 (1986).

8.

Yu. B. Gaididei, S. F. Mingaleev, and P. L. Christiansen, Curvature-induced symmetry breaking in nonlinear Schrödinger models, *Phys. Rev. E*
**62**:R53–R55 (2000).

9.

R. H. Goodman, P. J. Holmes, and M. I. Weinstein, Strong NLS soliton-defect interactions, submitted to *Physica D*(2003).

10.

M. Grillakis, Analysis of the linearization around a critical point of an infinite dimesional Hamiltonian system, *Comm. Pure Appl. Math.*
**43**:299–333 (1990).

11.

J. Guckenheimer and P. Holmes, *Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields*(Springer, New York, 1990).

12.

C. K. R. T. Jones, Instability of standing waves for non-linear Schrödinger-type equations, *Ergodic Theory Dynam. Systems*
**8**:119–138 (1988).

13.

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, *Comm. Pure Appl. Math.*
**41**:891–907 (1988).

14.

E. H. Lieb, R. Seiringer, and J. Yngvason, Arigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, *Comm. Math. Phys.*
**224**:17–31 (2001).

15.

K. W. Mahmud, J. N. Kutz, and W. P. Reinhardt, Bose-Einstein condensates in a onedimensional double square well: Analytical solutions of the nonlinear Schrödinger equation, *Phys. Rev. A*
**66**:063607 (2002).

16.

Y.-G. Oh, Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials, *Comm. Math. Phys.*
**121**:11–33 (1989).

17.

H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, *Physica D*
**30**:207–218 (1988).

18.

A. Soffer and M. I. Weinstein, Resonances and radiation damping in Hamiltonian nonlinear wave equations, *Invent. Math.*
**136**:9–74 (1999).

19.

A. Soffer and M. I. Weinstein, Selection of the ground state in nonlinear Schrödinger equations, submitted (2001). http://arxiv.org/abs/nlin/0308020

20.

R. Weder, The _{Wk, p}continuity of the Schrödinger wave operators on the line, *Comm. Math. Phys.*
**208**:507–520 (1999).

21.

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, *SIAM J. Math. Anal.*
**16**:472–491 (1985).

22.

M. I. Weinstein,Lyapunov stability of ground states of nonlinear dispersive evolution equations, *Comm. Pure Appl. Math.*
**39**:51–68 (1986).