Journal of Statistical Physics

, Volume 116, Issue 1, pp 79–95

Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture

Authors

  • B.-Q. Jin
    • C. N. Yang Institute for Theoretical PhysicsState University of New York at Stony Brook
  • V. E. Korepin
    • C. N. Yang Institute for Theoretical PhysicsState University of New York at Stony Brook
Article

DOI: 10.1023/B:JOSS.0000037230.37166.42

Cite this article as:
Jin, B. & Korepin, V.E. Journal of Statistical Physics (2004) 116: 79. doi:10.1023/B:JOSS.0000037230.37166.42

Abstract

We consider the one-dimensional quantum spin chain, which is called the XX model (XX0 model or isotropic XY model) in a transverse magnetic field. We are mainly interested in the entropy of a block of Lneighboring spins at zero temperature and of an infinite system. We represent the entropy in terms of a Toeplitz determinant and calculate the asymptotic analytically. We derive the first two terms of the asymptotic decomposition. Interestingly, these two terms of decomposition clearly show a length scale related to the field h.

quantum spin chainXX0 modelentropyToeplitz determinantquantum entanglement
Download to read the full article text

Copyright information

© Plenum Publishing Corporation 2004