Journal of Scheduling

, 7:243

On-Line Algorithms for the Dynamic Traveling Repair Problem


DOI: 10.1023/B:JOSH.0000019683.85186.57

Cite this article as:
Irani, S., Lu, X. & Regan, A. J Sched (2004) 7: 243. doi:10.1023/B:JOSH.0000019683.85186.57


We consider the dynamic traveling repair problem in which requests with deadlines arrive through time on points in a metric space. Servers move from point to point at constant speed. The goal is to plan the motion of servers so that the maximum number of requests are met by their deadline. We consider a restricted version of the problem in which there is a single server and the length of time between the arrival of a request and its deadline is constant. We give upper bounds for the competitive ratio of two very natural algorithms as well as several lower bounds for any deterministic algorithm. Most of the results in this paper are expressed as a function of β, the diameter of the metric space. In particular, we prove that the upper bound given for one of the two algorithms is within a constant factor of the best possible competitive ratio.

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Information and Computer Science DepartmentUC IrvineUSA
  2. 2.Institute of Transportation StudiesUC IrvineUSA
  3. 3.Department of Civil and Environmental EngineeringUC IrvineUSA