Journal of Oceanography

, Volume 60, Issue 1, pp 53–62

Export Production in the Equatorial and North Pacific Derived from Dissolved Oxygen, Nutrient and Carbon Data

  • Reiner Schlitzer

DOI: 10.1023/B:JOCE.0000038318.38916.e6

Cite this article as:
Schlitzer, R. Journal of Oceanography (2004) 60: 53. doi:10.1023/B:JOCE.0000038318.38916.e6


A global ocean inverse model that includes the 3D ocean circulation as well as the production, sinking and remineralization of biogenic particulate matter is used to estimate the carbon export flux in the Pacific, north of 10°S. The model exploits the existing large datasets for hydrographic parameters, dissolved oxygen, nutrients and carbon, and determines optimal export production rates by fitting the model to the observed water column distributions by means of the “adjoint method”. In the model, the observations can be explained satisfactorily with an integrated carbon export production of about 3 Gt C yr−1 (equivalent to 3⋅1015 gC yr−1) for the considered zone of the Pacific Ocean. This amounts to about a third of the global ocean carbon export of 9.6 Gt C yr−1 in the model. The highest export fluxes occur in the coastal upwelling region off northwestern America and in the tropical eastern Pacific. Due to the large surface area, the open-ocean, oligotrophic region in the central North Pacific also contributes significantly to the total North Pacific export flux (0.45 Gt C yr−1), despite the rather small average flux densities in this region (13 gC m−2yr−1). Model e-ratios (calculated here as ratios of model export production to primary production, as inferred from satellite observations) range from as high a value as 0.4 in the tropical Pacific to 0.17 in the oligotrophic central north Pacific. Model e-ratios in the northeastern Pacific upwelling regions amount to about 0.3 and are lower than previous estimates.

Export production carbon cycle modeling nutrients oxygen 

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Reiner Schlitzer
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchColumbusstrasse, BremerhavenGermany

Personalised recommendations