Article

Journal of Materials Science

, Volume 39, Issue 20, pp 6183-6190

First online:

‘Smart’ Raman/Rayleigh imaging of nanosized SiC materials using the spatial correlation model

  • M. HavelAffiliated withNanophases and Heterogeneous Solids Group, LADIR-UMR7075 Centre National de la Recherche Scientifique & Université Pierre et Marie Curie, 2 rue Henry DunantDépartement des Matériaux et Systémes Composites, Office National d'Etudes et de Recherches Aérospatiales
  • , D. BaronAffiliated withNanophases and Heterogeneous Solids Group, LADIR-UMR7075 Centre National de la Recherche Scientifique & Université Pierre et Marie Curie, 2 rue Henry Dunant
  • , Ph. ColombanAffiliated withNanophases and Heterogeneous Solids Group, LADIR-UMR7075 Centre National de la Recherche Scientifique & Université Pierre et Marie Curie, 2 rue Henry Dunant

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Non-destructive Raman and Rayleigh microspectrometries were used to map nanostructural and topological variations across the diameter of the SCS-6™ Textron SiC fibre. It is shown for the first time that Rayleigh imaging offers a competitive alternative to AFM measurements for materials containing carbon as a second phase. The Spatial Correlation Model has been used to decompose the SiC Raman spectra into amorphous and crystalline components. ‘Smart’ Raman images, which contain the calculated structural parameters revealed the nanostructure distribution. A good agreement has been obtained at the nanoscale between these smart images and transmission electron microscopy (TEM) data. A major asset of Raman ‘smart’ images is to give a non destructive and global view on the crystal quality, grain size and residual stress. The potential and the limitations of the procedure are discussed.