Skip to main content
Log in

A Raman microprobe study of electrical treeing in polyethylene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The chemical nature of electrical tree growth in a blend of high and low density polyethylene has been studied by confocal Raman microprobe spectroscopy. The observed spectra, which are easily perturbed by the Raman probe beam, can be described in terms of three components, the relative intensities of which vary from place-to-place on the sample. Throughout the body of the tree, the usual Raman bands of polyethylene are seen, but superimposed upon a pronounced fluorescent background. This suggests a degree of material degradation throughout the structure, even where there is no visible evidence of electrical discharge damage or ageing. The individual channels that make up the fractal structure of the tree can then be divided into two distinct categories. Within the core of the tree, their Raman spectra are made up of two elements; fluorescence, plus the G and D bands of sp2 hybridized carbon. Here, the tree channels are best thought of as hollow tubules surrounded by a carbonaceous shell. At the tips, the channels are characterized simply by the Raman bands of polyethylene superimposed upon a reduced fluorescent background, irrespective of their size. That is, in this region, the tree channels are simply hollow tubules within the dielectric. The transition between these two structures occurs relatively abruptly. These observations are related to the treeing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Dissado and J. C. Fothergill, “Electrical Degradation and Breakdown in Polymers,” edited by. G. C. Stevens (Peter Perigrinus, London, 1992).

    Google Scholar 

  2. J. H. Mason, IEE Proc. A. 128 (1981) 193.

    Google Scholar 

  3. J. V. Champion, S. J. Dodd, Y. Zhao, A. S. Vaughan, M. Brown, A. E. Davies, S. J. Sutton and S. G. Swingler, IEEE Trans. Diel. Electr. Insul. 8 (2001) 284.

    Google Scholar 

  4. R. J. Densley, ibid. 14 (1979) 148.

    Google Scholar 

  5. M. Ieda and N. Nawata, in “Ann. Rep. CEIDP” (IEEE, Piscataway, 1972) p. 143.

    Google Scholar 

  6. J. V. Champion and S. J. Dodd, J. Phys. D: Appl. Phys. 32 (1999) 305.

    Google Scholar 

  7. E. David, J.-L. Parpal and J. P. Crine, IEEE Trans. on Diel. Electr. Insul. 3 (1996) 248.

    Google Scholar 

  8. J. V. Champion and S. J. Dodd, J. Phys. D: Appl. Phys. 34 (2001) 1235.

    Google Scholar 

  9. J. V. Champion and S. J. Dodd, in “Space Charge in Solid Dielectrics,” edited by L. A. Dissado and J. C. Fothergill (The Dielectrics Society, Leicester, 1998) p. 273.

    Google Scholar 

  10. C. Laurent and C. Mayoux, IEEE Trans. Electr. Insul. 15 (1980) 33.

    Google Scholar 

  11. K. Wu, Y. Suzuoki, T. Mizutani and H. Xie, J. Phys. D: Appl. Phys. 33 (2000) 1209.

    Google Scholar 

  12. F. Noto and N. Yoshimura, “Ann. Rep. CEIDP” (IEEE, Piscataway, 1974) p. 207.

    Google Scholar 

  13. J. V. Champion and S. J. Dodd, J. Phys. D: Appl. Phys. 29 (1996) 862.

    Google Scholar 

  14. J. V. Champion, S. J. Dodd and J. M. Alison, ibid. 29 (1996) 2689.

    Google Scholar 

  15. J. V. Champion and S. J. Dodd, ibid. 28 (1995) 398.

    Google Scholar 

  16. I. L. Hosier, A. S. Vaughan and S. G. Swingler, J. Mater. Sci. 32 (1997) 4523.

    Google Scholar 

  17. R. Tabaksblat, R. J. Meier and B. J. Kip, Appl. Spectroscopy 46 (1992) 60.

    Google Scholar 

  18. G. Turrell and P. Dhamelincourt, in “Modern Techniques in Raman Spectroscopy,” edited by J. J. Lasema (Wiley, London, 1996) p. 116.

    Google Scholar 

  19. N. J. Everall, Appl. Spectroscopy 54 (2000) 773.

    Google Scholar 

  20. N. J. Everall, Appl. Spectroscopy 54 (2000) 1515.

    Google Scholar 

  21. S. Michielsen, J. Appl. Polym. Sci. 81 (2001) 1662.

    Google Scholar 

  22. H. Reinecke, S. J. Spells, J. Sacristan, J. Yarwood and C. Mijangos, Appl. Spectroscopy 55 (2001) 1660.

    Google Scholar 

  23. K. J. Baldwin and D. N. Batchelder, ibid. 55 (2001) 517.

    Google Scholar 

  24. L. Baia, K. Gigant, U. Posset, G. Schottner, W. Kiefer and J. Popp, ibid. 56 (2002) 536.

    Google Scholar 

  25. M. Van Den Brink, M. Pepers and A. M. Van Herk, J. Raman Spectroscopy 33 (2002) 264.

    Google Scholar 

  26. Y. Zhao, A. S. Vaughan, J. V. Champion, S. J. Dodd and S. J. Sutton, in Proceedings of the 8th International Conference on Dielectric Materials, Measurements and Applications, Edinburgh, September 2000 (IEE, London, 2000) p. 314.

    Google Scholar 

  27. D. I. Bower and W. F. Maddams, “The Vibrational Spectroscopy of Polymers” (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  28. C. Coupry, G. Sagon and P. Gorguet-Ballesteros, J. Raman Spectroscopy 28 (1997) 85.

    Google Scholar 

  29. C. Coupry, Analusis 28 (2000) 39.

    Google Scholar 

  30. P. W. Sayers, T. J. Lewis, J. P. Llewellyn and C. L. Griffiths, in Proceedings of the 8th International Conference on Dielectric Materials, Measurements and Applications, Edinburgh, September 2000 (IEE, London, 2000) p. 403.

    Google Scholar 

  31. L. Burgio, D. A. Ciomartan and R. H. Clark, J. Raman Spectroscopy 28 (1997) 79.

    Google Scholar 

  32. P. Hendra, C. Jones and G. Warnes, “Fourier Transform Raman Spectroscopy” (Ellis Horwood, Chichester, 1991).

    Google Scholar 

  33. J. B. Wang, C. Y. Zhang, X. L. Zhong and G. W. Yang, Chem. Phys. Letts. 361 (2002) 86.

    Google Scholar 

  34. J.-M. Costantini, F. Couvreur, J.-P. Salvetat and S. Bouffard, Nucl. Instr. Meth. Phys. Res. B 194 (2002) 132.

    Google Scholar 

  35. A. C. Ferrari, Diam. Relat. Mater. 11 (2002) 1053.

    Google Scholar 

  36. Y. Umehara, S. Murai, Y. Koide and M. Murakami, ibid. 11 (2002) 1429.

    Google Scholar 

  37. A. Heiman, E. Lakin, E. Zolotoyabko and A. Hoffman, ibid. 11 (2002) 601.

    Google Scholar 

  38. S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal and R. Kalish, ibid. 5 (1996) 433.

    Google Scholar 

  39. A. M. Macdonald, A. S. Vaughan and P. Wyeth, Appl. Spectroscopy (2003) in press.

  40. N. Savvides, J. Appl. Phys. 59 (1986) 4133.

    Google Scholar 

  41. Y. Zhao, PhD Thesis, The University of Reading, 1999.

  42. A. Schwarz and G. Cramer, in “Polyethylene,” edited by A. Renfrew and P. Morgan (Interscience, London, 1960) p. 231.

    Google Scholar 

  43. A. S. Vaughan, S. G. Swingler, M. Lanfear, H. Weingandt and H. White, in “Ann. Rep. CEIDP” (IEEE, Piscataway, 1992) p. 501.

    Google Scholar 

  44. D. J. Parr and R. M. Scarisbrick, Proc. IEE 112 (1965) 1625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Vaughan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, A.S., Dodd, S.J. & Sutton, S.J. A Raman microprobe study of electrical treeing in polyethylene. Journal of Materials Science 39, 181–191 (2004). https://doi.org/10.1023/B:JMSC.0000007743.81011.20

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000007743.81011.20

Keywords

Navigation