1.

Bachmair, L.:

*Canonical Equational Proofs*, Birkhäuser, Boston, 1991.

MATH2.

Bachmair, L. and Dershowitz, N.: Completion for rewriting modulo a congruence,

*Theoret. Comput. Sci.*
**67**(2 & 3) (Oct. 1989), 173-201.

MATHMathSciNetCrossRef3.

Bachmair, L. and Dershowitz, N.: Equational inference, canonical proofs, and proof orderings,

*J. ACM*
**41** (1994), 236-276.

MATHMathSciNetCrossRef4.

Bachmair, L., Ramakrishnan, I., Tiwari, A. and Vigneron, L.: Congruence closure modulo Associativity-Commutativity, in H. Kirchner and C. Ringeissen (eds), *Frontiers of Combining Systems, Third International Workshop, FroCoS 2000*, Nancy, France, March 2000, Lecture Notes in Artificial Intelligence 1794, Springer, Berlin, 2000, pp. 245-259.

5.

Bachmair, L. and Tiwari, A.: Abstract congruence closure and specializations, in D. McAllester (ed.), *Conference on Automated Deduction, CADE 2000*, Pittsburgh, PA, June2000, Lecture Notes in Artificial Intelligence 1831, Springer, Berlin, 2000, pp. 64-78.

6.

Bachmair, L. and Tiwari, A.: Congruence closure and syntactic unification, in C. Lynch and D. Narendran (eds), *14th International Workshop on Unification*, 2000.

7.

Ballantyne, A. M. and Lankford, D. S.: New decision algorithms for finitely presented commutative semigroups,

*Comp. Math. Appl.*
**7** (1981), 159-165.

MathSciNetCrossRef8.

Becker, T. and Weispfenning, V.:

*Gröbner Bases: A computational Approach to Commutative Algebra*, Springer-Verlag, Berlin, 1993.

MATH9.

Cardozo, E., Lipton, R. and Meyer, A.: Exponential space complete problems for petri nets and commutative semigroups, in *Proc. 8th Ann. ACM Symp on Theory of Computing*, 1976, pp. 50-54.

10.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S. and Tommasi, M.: Tree automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, 1997.

11.

Cyrluk, D., Lincoln, P. and Shankar, N.: On Shostak’s decision procedure for combination of theories, in M. A. McRobbie and J. Slaney (eds), *Proceedings of the 13th Int. Conference on Automated Deduction*, Lecture Notes in Comput. Sci. 1104, Springer, Berlin, 1996, pp. 463-477.

12.

Dershowitz, N. and Jouannaud, J. P.: Rewrite systems, in J. van Leeuwen (ed.), *Handbook of Theoretical Computer Science (Vol. B: Formal Models and Semantics)*, North-Holland, Amsterdam, 1990.

13.

Dershowitz, N. and Manna, Z.: Proving termination with multiset orderings,

*Comm. ACM*
**22**(8) (1979), 465-476.

MATHMathSciNetCrossRef14.

Domenjoud, E. and Klay, F.: Shallow AC theories, in *Proceedings of the 2nd CCL Workshop*, La Escala, Spain, Sept. 1993.

15.

Downey, P. J., Sethi, R. and Tarjan, R. E.: Variations on the common subexpressions problem,

*J. ACM*
**27**(4) (1980), 758-771.

MATHMathSciNetCrossRef16.

Evans, T.: The word problem for abstract algebras,

*J. London Math. Soc.*
**26** (1951), 64-71.

MATHMathSciNet17.

Evans, T.: Word problems,

*Bull. Amer. Math. Soc.*
**84**(5) (1978), 789-802.

MATHMathSciNetCrossRef18.

Kapur, D.: Shostak’s congruence closure as completion, in H. Comon (ed.), *Rewriting Techniques and Applications, RTA 1997*, Sitges, Spain, July 1997, Lecture Notes in Comput. Sci. 1103, Springer, Berlin, pp. 23-37.

19.

Koppenhagen, U. and Mayr, E.W.: An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals, in Y. D. Lakshman (ed.), *Proceedings of the International Symposium on Symbolic and Algebraic Computation*, 1996, pp. 55-62.

20.

Marche, C.: On ground AC-completion, in R. V. Book (ed.), *4th International Conference on Rewriting Techniques and Applications*, Lecture Notes in Comput. Sci. 488, Springer, Berlin, 1991, pp. 411-422.

21.

Mayr, E. W. and Meyer, A. R.: The complexity of the word problems for commutative semigroups and polynomial ideals,

*Adv. in Math.*
**46** (1982), 305-329.

MATHMathSciNetCrossRef22.

Narendran, P. and Rusinowitch, M.: Any ground associative-commutative theory has a finite canonical system, in R. V. Book (ed.), *4th International Conference on Rewriting Techniques and Applications*, Lecture Notes in Comput. Sci. 488, Springer, Berlin, 1991, pp. 423-434.

23.

Nelson, G. and Oppen, D.: Fast decision procedures based on congruence closure,

*J. Assoc. Comput. Mach.*
**27**(2) (Apr. 1980), 356-364.

MATHMathSciNet24.

Peterson, G. E. and Stickel, M. E.: Complete sets of reductions for some equational theories,

*J. ACM*
**28**(2) (Apr. 1981), 233-264.

MATHMathSciNetCrossRef25.

Plaisted, D. and Sattler-Klein, A.: Proof lengths for equational completion,

*Inform. and Comput.*
**125** (1996), 154-170.

MATHMathSciNetCrossRef26.

Rubio, A. and Nieuwenhuis, R.: A precedence-based total AC-compatible ordering, in C. Kirchner (ed.), *Proceedings of the 5 Intl. Conference on Rewriting Techniques and Applications*, Lecture Notes in Comput. Sci. 960, Springer, Berlin, 1993, pp. 374-388.

27.

Sherman, D. J. and Magnier, N.: Factotum: Automatic and systematic sharing support for systems analyzers, in *Proc. TACAS*, Lecture Notes in Comput. Sci. 1384, 1998.

28.

Shostak, R. E.: Deciding combinations of theories,

*J. ACM*
**31**(1) (1984), 1-12.

MATHMathSciNetCrossRef29.

Snyder, W.: A fast algorithm for generating reduced ground rewriting systems from a set of ground equations, *J. Symbolic Comput.*
**15**(7) (1993).

30.

Tiwari, A.: Decision procedures in automated deduction, Ph.D. thesis, State University of New York at Stony Brook, New York, 2000.