Journal of Applied Electrochemistry

, Volume 34, Issue 2, pp 137-145

First online:

Membrane stability studies for vanadium redox cell applications

  • Theresa SukkarAffiliated withSchool of Chemical Engineering & Industrial Chemistry, University of New South Wales
  • , Maria Skyllas-Kazacos

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Accelerated degradation tests of selected membranes were carried out to determine their stability in the fully charged positive electrolyte solution of the vanadium redox battery. Each membrane was soaked in both 1.0 and 0.1 M V(V) solutions for extended periods of time and UV–visible spectroscopy was used to determine the rate of oxidation of the membrane by V(V) to produce V(IV) ions in solution. The membranes were then evaluated for any changes in their resistance, IEC, diffusivity and water transfer properties. FESEM was used to analyse the membranes for physical damage. Different trends were observed in the 1.0 and 0.1 M V(V) electrolytes. Of the membranes studied, Nafion 112E/H+ showed the worst stability in the 0.1 M V(V) solution but one of the best stabilities in 1.0 M V(V). The dilute V(V) electrolyte appears to enter the pores of the membrane more readily as the membranes swell significantly in this solution. The 0.1 M V(V) solution therefore causes accelerated deterioration of the membrane performance as a result of physical destruction, chemical modification or a combination of both. The effect is more pronounced in the membranes that have a higher degree of swelling in the vanadium electrolyte.

ion exchange membranes membrane stability vanadium redox cell