Skip to main content
Log in

The Impact of the New Earth Gravity Models on the Measurement of the Lense–Thirring Effect

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We examine how the new forthcoming Earth gravity models from the CHAMP and, especially, GRACE missions could improve the measurement of the general relativistic Lense–Thirring effect according to the various kinds of observables which could be adopted. In a very preliminary way, we use the first recently released EIGEN2 CHAMP–only and GGM01C GRACE–based Earth gravity models in order to assess the impact of the mismodelling in the even zonal harmonic coefficients of geopotential which represents one of the major sources of systematic errors in this kind of measurement. However, discretion is advised on evaluating the reliability of these results because the Earth gravity models used here, especially EIGEN2, are still very preliminary and more extensive calibration tests must be performed. According to the GGM01C model, the systematic error due to the unmodelled even zonal harmonics of geopotential amounts to 2% for the combination of the nodes of LAGEOS and LAGEOS II and the Perigee of LAGEOS II used up to now by Ciufolini and coworkers in the currently performed LAGEOS-LAGEOS II Lense-Thirring experiment, and to 14% for a combination explicitly presented here which involves the nodes only of LAGEOS and LAGEOS II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Lense H. Thirring (1918) Phys. Z. 19 156–163

    Google Scholar 

  2. Ciufolini, I. and Wheeler, J. A. (1995). Gravitation and Inertia, Princeton University Press, New York, 498pp.

    Google Scholar 

  3. Everitt, C. W. F. and other members of the Gravity Probe B team (2001). In Gyros, Clocks, Interferometers...:Testing Relativistic Gravity in Space, C. Lämmerzahl, C. W. F. Everitt, and F. W. Hehl (Eds.), Springer, Berlin, pp. 52-82. Lecture Note in Physics 562).

    Google Scholar 

  4. Ciufolini, I. (1996). Nuovo Cimento A 109, 1709-1720.

    Google Scholar 

  5. Ciufolini, I. (1986). Phys. Rev. Lett. 56, 278-281.

    Google Scholar 

  6. Iorio, L., Lucchesi, D., and Ciufolini, I. (2002). Class. Quant. Grav. 19, 4311-4325.

    Google Scholar 

  7. Iorio, L. (2003a). Gen. Relat. Grav. 35, 1263-1272.

    Google Scholar 

  8. Ciufolini, I., Pavlis, E. C., Chieppa, F., Fernandes-Vieira, E., and Pérez-Mercader, J. (1998). Science 279, 2100-2103.

    Google Scholar 

  9. Ciufolini, I. (2002). Proceedings of the Physics in Collision Conference, Stanford, California, June 20–22, 2002, Preprint gr-qc/0209109.

  10. Ries, J. C., Eanes, R. J., and Tapley, B. D. (2003). In Nonlinear Gravitodynamics. The Lense-Thirring Effect, R. Ruffini and C. Sigismondi (Eds.), World Scientific, Singapore, pp. 201-211.

    Google Scholar 

  11. Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H., Wang, Y. M., Williamson, R. G., Pavlis, E. C., Rapp, R. H., and Olson, T. R. (1998). The Development of the Joint NASA GSFC and the National Imagery Mapping Agency (NIMA) Geopotential Model EGM96 NASA/TP-1998-206861.

  12. Iorio, L. (2003b). Celest. Mech. 86, 277-294.

    Google Scholar 

  13. Gruber, Th., Bode, A., Reigber, Ch., and Schwintzer, P. (2000). Geophys. Res. Lett. 27, 4005-4008.

    Google Scholar 

  14. Klokočnik, J., Reigber, Ch., Schwintzer, P., Wagner, C. A., and Kostelecký, J. (2002). J. Geodesy 76, 189-198.

    Google Scholar 

  15. Lucchesi, D. (2001). Planet Space Sci. 49, 447-463.

    Google Scholar 

  16. Lucchesi, D. (2002). Planet Space Sci., 50, 1067-1100.

    Google Scholar 

  17. Vespe, F. (1999). Adv. Space Res. 23, 699-703.

    Google Scholar 

  18. Pavlis, E. (2000). In Recent Developments in General Relativity, R. Cianci, R. Collina, M. Francaviglia and P. Fré (Eds.), Springer, Milan, Italy, pp. 217-233.

    Google Scholar 

  19. Ries, J. C., Eanes, R. J., Tapley, B. D., and Peterson, G. E. (2002). Proceedings of the 13th International Laser Ranging Workshop, Washington, DC, October 7–11, 2002, Preprint http://cddisa.gsfc.nasa.gov/lw13/lw_proceedings.html#science.

  20. Reigber, Ch., Schwintzer, P., Neumayer, K.-H., Barthelmes, F., König, R., Förste, Ch., Balmino, G., Biancale, R., Lemoine, J.-M., Loyer, S., Bruinsma, S., Perosanz, F., and Fayard, T. (2003). Adv. Space Res. 31, 1883-1888.

    Google Scholar 

  21. Deleflie, F., Exertier, P., Métris, G., Berio, P., Laurain, O., Lemoine, J.-M. and Biancale, R. (2003). Adv. Geosci. 1, 103-108.

    Google Scholar 

  22. Eanes, R. J. and Bettadpur, S. V. (1996). In Global Gravity Field and its Temporal Variations, R. H. Rapp, A. Cazenave, and R. S. Nerem (Eds.), Springer, New York, pp. 30-41, (IAG Symp. Ser. 116).

    Google Scholar 

  23. Lucchesi, D. (2003). Phys. Lett. A 318, 234-240.

    Google Scholar 

  24. Iorio, L. (2002). J. Geod. Soc. Jpn. 48, 13-20.

    Google Scholar 

  25. Iorio, L. (2002). Class. Quant. Grav. 19, 5473-5480.

    Google Scholar 

  26. Iorio, L. (2001). Celest. Mech. 79, 201-230.

    Google Scholar 

  27. Tapley, B. D., Chambers, D. P., Cheng, M. K., Kim, M. C., Poole, S., and Ries, J. C. (2000). Paper presented at 25th EGS General Assembly, Nice, France, April 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iorio, L., Morea, A. The Impact of the New Earth Gravity Models on the Measurement of the Lense–Thirring Effect. General Relativity and Gravitation 36, 1321–1333 (2004). https://doi.org/10.1023/B:GERG.0000022390.05674.99

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000022390.05674.99

Navigation