Bloodflow models of the circle of Willis from magnetic resonance data
 Juan R. Cebral,
 Marcelo A. Castro,
 Orlando Soto,
 Rainald Löhner,
 Noam Alperin
 … show all 5 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
Detailed knowledge of the cerebral hemodynamics is important for a variety of clinical applications. Cerebral perfusion depends not only on the status of the diseased vessels but also on the patency of collateral pathways provided by the circle of Willis. Due to the large anatomical and physiologic variability among individuals, realistic patientspecific models can provide new insights into the cerebral hemodynamics. This paper presents an imagebased methodology for constructing patientspecific models of the cerebral circulation. This methodology combines anatomical and physiologic imaging techniques with computer simulation technology. The methodology is illustrated with a finite element model constructed from magnetic resonance image data of a normal volunteer. Several of the remaining challenging problems are identified. This work represents a starting point in the development of realistic models that can be applied to the study of cerebrovascular diseases and their treatment.
 G. W. Petty, R. D. Brown, J. P. Whisnant, J.D. Sicks, W. M. O'Fallon and D.O. Wiebers, Ischemic stroke subtypes; a populationbased study of functional outcome, survival, and recurrence. Stroke 31 (2000) 1062–1068.
 M. Kluytmans, J. van der Grond, K.J. van Everdingen, C. J. M. Klijn, L.J. Kappelle and M.A. Viergever, Cerebral Hemodynamics in Relation to Patterns of Collateral Flow. Stroke 30 (1999) 1432–1439.
 R. M. K. W. Lee, Morphology of cerebral arteries. Pharmac. Ther. 66 (1995) 149–173.
 R. H. Kufahl and M. E. Clark, A Circle of Willis Simulation Using Distensible Vessels and Pulsatile Flow. J. Biomech. Engng. 107 (1985) 112–22.
 J. R. Cebral, R. Löhner and J. E. Burgess, Computer Simulation of Cerebral Artery Clipping: Relevance to Aneurysm NeuroSurgery Planning. In: E. Oñate, G. Bugeda and B. Suarez (eds.), Proc. ECCOMAS, Barcelona, Spain, Sept. 11–14 (2000).
 A. Fernandez, T. David and M. D. Brown, Numerical models of autoregulation and blood flow in the cerebral circulation. Comp. Meth. Biomech. Engng. 5 (2002) 7–20.
 F. T. Charbel, K.H. Guppy, M. Zhao and M.E. Clark, Computerized hemodynamic evaluation of the cerebral circulation for bypass. Neurosurg. Clin. N. Am. 12 (2001) 499–508.
 M. L. Barr and J. A. Kierman, The Human Nervous System: an Anatomical Viewpoint. Philadelphia: Lippincott Co. (1993), 451 pp.
 J. A. Moore, D. A. Steinman, D. WHoldsworth and C. R. Ethier, Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann. Biomed. Engng. 27 (1999) 32–41.
 C. A. Taylor, M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang and C.K. Zarins, Predictive medicine: vomputational techniques in therapeutic decisionmaking. Comp. Assisted Surgery 4 (1999) 231–247.
 S. Z. Zhao, X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff and Q. Long, Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33 (2000) 975–984.
 J. R. Cebral, P. J. Yim, R. Löhner, O. Soto and P. L. Choyke, Blood flow modeling in carotid arteries using computational fluid dynamics and magnetic resonance imaging. Acad. Radiol. 9 (2002) 1286–1299.
 P. J. Yim, J. R. Cebral, R. Mullick and P. J. Choyke, Vessel surface reconstruction with a tubular deformable model. IEEE Trans. Med. Imag. 20 (2001) 1411–1421.
 N. J. Pelc, Flow quantification and analysis methods. MRI Clin. N. Am. 3 (1995) 413–424.
 C. J. G. Bakker, R.M. Hoogeveen and M. A. Viergever, Construction of a protocol for measuring blood flow by twodimensional phasecontrast MRA. J. Magn. Reson. Imaging 9 (1999) 119–217.
 B. R. Mustert, D. M. Williams and M. R. Prince, In vitro model of arterial stenosis: correlation of MR signal dephasing and transstenotic pressure gradients. J. Magn. Reson. Imaging 16 (1998) 301–310.
 S. J. Owen, A survey of unstructured mesh generation technology. Proc. 7th International Meshing Roundtable, Sandia National Lab. (1998) 239–267 (www.imr.sandia.gov).
 R. Löhner, Automatic unstructured grid generators. Finite Elem. Anal. Design 25 (1997) 111–134.
 J. R. Cebral and R. Löhner, From medical images to anatomically accurate finite element grids. Int. J. Num. Meth. Engng. 51 (2001) 985–1008.
 J. R. Cebral, Realistic modeling of arterial hemodynamics from anatomic and physiologic image data. In: R. C. Batra and E.G. Henneke (eds.), Proc. 14th U.S. National Congress in Theoretical and Applied Mechanics, Blacksburg, Virginia, June 23–28 (2002) p. 79.
 J. R. Cebral, R. Löhner, P. L. Choyke and P. J. Yim, Merging of intersecting triangulations for finite element modeling. J. Biomech. 34 (2001) 815–819.
 P. J. Yim, J. R. Cebral, R. Löhner, V. B. Ho and P. L. Choyke, Estimation of mechanical stress on the carotid artery. Biomed. Engng Annual Conf., Durham (N.C.), Oct 4–7 (2001).
 G. Taubin, A signal processing approach to fair surface design. Comp. Graphics Proc. (1995) 351–358.
 R. Löhner, Regridding surface triangulations. J. Comp. Phys. 126 (1996) 1–10.
 J. Mazumdar. Biofluid Mechanics. Singapore: World Scientific (1992) 191 pp.
 F. G. Basombrio, E. A. Dari, G. C. Buscaglia and R. A. Feijoo, Numerical experiments in complex haemodynamics flows. NonNewtonian effects. Proc. XI Congress on Numerical Methods and Their Applications ENIEF, San Carlos de Bariloche, Argentina, Nov. 24–29 (2000).
 K. Perktold. and G. Rappitsch, Mathematical modeling of local arterial flow and vessel mechanics. In: J. Crolet and R. Ohayon (eds.), Computational Methods for FluidStructure Interaction. Pitman Research Notes in Mathematics 306 (1994) pp. 230–245.
 P. Neofitou and D. Drikakis, NonNewtonian modeling effects on stenotic channel flows. In: E. Oñate, G. Bugeda and B. Suarez (eds.), Proc. ECCOMAS CFD, Swansea, Wales, U.K., Sept. 4–7 (2001).
 O. Soto, R. Löhner, J. R. Cebral and R. Codina, A timeaccurate implicit monolithic finite element scheme for incompressible flow problems. In: E. Oñate, G. Bugeda and B. Suarez (eds.), Proc. ECCOMAS CFD, Swansea, UK, Sept. 4–7 (2001).
 Y. Saad, Iterative Methods for Sparse Linear Systems. Boston: PWS Pub. Co. (1996) 447 pp.
 J. R. Cebral, R. Löhner, O. Soto, P. L. Choyke and P. J. Yim, Imagebased finite element modeling of hemodynamics in stenosed carotid artery. Proc. SPIE Medical Imaging 4683 (2002) 297–304.
 J. R. Cebral, P. J. Yim, R. Löhner, O. Soto, H. Marcos and P. L. Choyke, New methods for computational fluid dynamics of carotid artery from magnetic resonance angiography. Proc. SPIE Medical Imaging 4321 (2001) 177–187.
 J. S. Stroud, S. A. Berger and D. Saloner, Numerical analysis of flow through a severely stenotic artery bifurcation. J. Biomech. Engng. 124 (2002) 9–20.
 N. Alperin, S. Lee, PUBS: Pulsatilebased segmentation of lumens conductiong nonsteady flow. Magn. Reson. Med. 49 (2003) 934–944.
 J. R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127 (1955) 553–563.
 C. A. Taylor, T. J. R. Hughes and C. K. Zarins, Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Engng. 158 (1998) 155–196.
 M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structuredtree outflow conditions. Ann. Biomed. Engng. 28 (2002) 1281–1299.
 L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modeling of the circulatory system: a preliminary analysis. Visual. Sci. 2 (1999) 75–83.
 R. Karch, F. Neumann, M. Neumann and W. Schreiner, Staged growth of optimized arterial tree models. Ann. Biomed. Engng. 28 (2000) 495–511.
 M. Zamir, On fractal properties of arterial trees. J. Theor. Biol. 197 (1999) 517–526.
 F. Calamante, P. J. Yim and J. R. Cebral, Estimation of bolus dispersion effects in perfusion MRI using imagebased computational fluid dynamics. NeuroImage 19 (2003) 342–353.
 L. R. Caplan. Stroke: a clinical approach. Boston: Butterworths (1986) 343 pp..
 J. S. Milner, J. A. Moore, B. K. Rutt and D. A. Steinman, Hemodynamics of human carotid artery bifurcations: computational studies in models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28 (1998) 143–156.
 Title
 Bloodflow models of the circle of Willis from magnetic resonance data
 Journal

Journal of Engineering Mathematics
Volume 47, Issue 34 , pp 369386
 Cover Date
 20031201
 DOI
 10.1023/B:ENGI.0000007977.02652.02
 Print ISSN
 00220833
 Online ISSN
 15732703
 Publisher
 Kluwer Academic Publishers
 Additional Links
 Topics
 Keywords

 circle of Willis
 computational fluid dynamics
 hemodynamics
 magnetic resonance
 Industry Sectors
 Authors

 Juan R. Cebral ^{(1)}
 Marcelo A. Castro ^{(1)}
 Orlando Soto ^{(1)}
 Rainald Löhner ^{(1)}
 Noam Alperin ^{(2)}
 Author Affiliations

 1. School of Computational Sciences, George Mason University, Fairfax, irginia, USA
 2. Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA