1.

J.S. Albuquerque, “Parameter estimation and data reconciliation for dynamic systems,” PhD thesis, Carnegie Mellon University, 1996.

2.

N. Arora and L.T. Biegler, “Redescending estimators for data reconciliation and parameter estimation,” Computers and Chemical Engineering, vol. 25, p. 1585, 2001.

3.

G. Bader and U Ascher, “A new basis implementation for a mixed order boundary value ODE solver,” SIAM J. Scientific and Statistical Computing, vol. 8, p. 483, 1987.

4.

L.T. Biegler, J. Nocedal, C. Schmid, and D.J. Ternet, “Numerical experience with a reduced hessian method for large scale constrained optimization,” Computational Optimization and Applications, vol. 15, p. 45, 2000.

5.

L.T. Biegler, J. Nocedal, and C. Schmid, “A reduced Hessian method for large-scale constrained optimization,” SIAM J. Optimization, vol. 5, no. 2, p. 314, 1995.

6.

A. Bjorck, E. Grimme, and P. van Dooren, “An implicit shift bidiagonalization algorithm for ill-posed systems,” BIT, vol. 34, p. 510, 1994.

7.

I. Bongartz, A.R. Conn, N.I.M. Gould, and Ph.L. Toint, “CUTE: Constrained and unconstrained testing environment,” ACM Transactions on Mathematical Software, vol. 21, no. 1, p. 123, 1995.

8.

D.S. Bunch, D.M. Gay, and R.E. Welsch, “Algorithm 717: Subroutines for maximum likelihood and quasi-likelohood estimation of parameters in nonlinear regression models,” ACM Transactions on Mathematical Software, vol. 19, no. 1, p. 109, 1993.

9.

R.H. Byrd, M.E. Hribar, and J. Nocedal, “An interior point algorithm for large scale nonlinear programming,” SIAM J. Optimization, vol. 9, no. 4, pp. 877-900, 1999.

10.

R.H. Byrd and J. Nocedal, “An analysis of reduced hessian methods for constrained optimization,” Mathematical Programming, vol. 49, pp. 285-323, 1991.

11.

D. Calvetti, L. Reichel, and Q. Zhang, “Estimation of the L-curve via Laczos bidiagonalization,” BIT, vol. 39, no. 4, p. 603, 1999.

12.

T.F. Coleman and Y. Li, “An interior trust region approach for nonlinear minimization subject to bounds,” SIAM J. Optimization, vol. 6, pp. 418-445, 1996.

13.

A. Conn, N. Gould, and P. Toint, Trust-region methods, MPS-SIAM Series on Optimization, Philadelphia, PA, 2000.

14.

J.E. Dennis, M. El-Alem, and M.C. Maciel, “A global convergence theory for general trust region based algorithms for equality constrained optimization,” SIAM J. Opt., vol. 7, p. 177, 1997.

15.

J.E. Dennis Jr., D.M. Gay, and R.E. Welsch, “An adaptive nonlinear least-squares algorithm,” ACM Transactions on Mathematical Software, vol. 7, no. 3, p. 348, 1981.

16.

J.E. Dennis, M. Heinkenschloss, and L. Vicente, “Trust-region interior-point sqp algorithms for a class of nonlinear programming problems,” SIAM J. Control and Optimization, vol. 36, no. 5, p. 1750, 1998.

17.

E.D. Dolan and J. Moré, “Benchmarking optimization software with COPS,” Technical report, ANL/MCS-246, Argonne National Laboratory, 2001.

18.

E.D. Dolan and J. Moré, “Benchmarking optimization software with performance profiles,” Mathematical Programming Series A, on-line, 2002.

19.

M. El-Alem, “A global convergence theory for the Celis-Dennis-Tapia trust region algorithm for constrained optimization,” SIAM J. Numerical Analysis, vol. 28, p. 266, 1991.

20.

R. Fletcher, N. Gould, S. Leyffer, P. Toint, and A. Wächter, “Global convergence of a trust region SQP filter algorithm for general nonlinear programming,” SIAM J. Optimization, vol. 13, no. 3, pp. 635-665, 2003.

21.

R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty function,” Mathematical Programming, vol. 92, no. 2, p. 239, 2002.

22.

R. Fletcher and C. Xu, “Hybrid methods for nonlinear least squares,” IMA J. of Numerical Analysis, vol. 7, p. 371, 1987.

23.

D.M. Gay, “Computing optimal locally constrained steps,” SIAM J. Scientific and Statistical Computing, vol. 2, no. 2, p. 186, 1981.

24.

D.M. Gay, “A trust-region approach to linearly constrained optimization,” Numerical Analysis Proceedings (Dundee, 1983). D.F. Griffiths, (Ed.), Springer-Verlag, vol. 72, 1983.

25.

S.M. Goldfeld, R.E. Quandt, and H.F. Trotter, “Maximization by quadratic hill climbing,” Econometrica, vol. 34, no. 3, p. 541, 1966.

26.

G. Golub and U. von Matt, “Quadratically constrained least squares and quadratic problems,” Numerische Mathematik, vol. 59, p. 561, 1991.

27.

F. Gomes, M.C. Maciel, and J.M. Martinez, “Nonlinear programming algorithms using trust regions and augmented Lagrangians with nonmonotone penalty parameters,” Mathematical Programming, vol. 84, p. 161, 1999.

28.

A. Griewank, D. Juedes, and J. Utke, “ADOL-C: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software, vol. 22, no. 2, p. 131, 1996.

29.

M. Gullicksson, “Algorithms for nonlinear least-squares with Applications to orthogonal regression,” Technical report, UMINF-178.90, University of Umea, Sweden, 1990.

30.

P.C. Hansen, Rank Deficient and Discrete Ill-Posed Problems, SIAM: Philadelphia, 1999.

31.

M.D. Hebden, “An algorithm for minimization using exact second derivatives,” Technical report, Atomic Energy Research Establishment report T.P. 515, Harwell, England, 1973.

32.

N. Krejic, J.M. Martinez, M. Mello, and E. Pilotta, “Validation of an augmented lagrangian algorithm with a Gauss-Newton Hessian approximation using a set of hard-spheres problems,” Computational Optimization and Applications, vol. 16, p. 247, 2000.

33.

M. Lalee, J. Nocedal, and T. Plantenga, “On the implementation of an algorithm for large-scale equality constrained optimization,” SIAM J. Optimization, vol. 8, no. 3, p. 682, 1998.

34.

S. Leyffer, R. Fletcher, and P. Toint, “On the global convergence of a filter SQP algorithm,” SIAM J. Optimization, vol. 13, no. 1, p. 44, 2002.

35.

C. Lin and J.J. Moré, “Newton's method for large bound-constrained optimization problems,” SIAM Journal on Optimization, vol. 9, no. 4, p. 1100, 1999.

36.

J.J. Moré, The Levenberg-Marquardt Algorithm: Implementation and Theory, volume Numerical Analysis, Dundee 1977. Springer-Verlag: Berlin, 1977.

37.

J. Nocedal and M.L. Overton, “Projected Hessian updating algorithms for nonlinearly constrained optimization,” SIAM J. Numer. Anal., vol. 22, no. 5, p. 821, 1985.

38.

J. Nocedal and S.J. Wright, Numerical Optimization, Springer: New York, 1999.

39.

E.O. Omojokun, “Trust region algorithms for optimization with nonlinear equality and inequality constraints,” PhD thesis, Department of Computer Science, University of Colorado, Boulder, 1989.

40.

M. Rojas, “A large scale trust region approach to the regularization of discrete ill-posed problems,” PhD thesis, Rice University, 1998.

41.

M. Rojas, S.A. Santos, and D.C. Sorensen, “A matrix free algorithm for the large-scale trust region subproblem,” SIAM J. Optimization, vol. 11, no. 3, p. 611, 2000.

42.

M. Rojas and D.C. Sorensen, “A trust region approach to the regularization of large-scale discrete forms of ill-posed problems,” SIAM J. on Scientific Computing, vol. 23, no. 6, pp. 1842-1860, 2002.

43.

I.B.F. Tjoa, “Simultaneous solution and optimization strategies for data analysis,” PhD thesis, Carnegie Mellon University, 1991.

44.

M. Ulbrich and S. Ulbrich, “Nonmonotone trust region methods for nonlinear equality constrained optimization without a penalty function,” Mathematical Programming, Series B, on-line, 2002.

45.

A.Wächter and L.T. Biegler, “Global and local convergence of a reduced space Quasi-Newton barrier algorithm for large-scale nonlinear programming,” Technical report, CAPD Technical Report B-00-06, Carnegie Mellon University, August, 2000.

46.

A. Wächter and L.T. Biegler, “Global and local convergence of line search filter methods for nonlinear programming,” Technical report, CAPD Technical Report B-01-09, Carnegie Mellon University, August, 2001.