, Volume 19, Issue 5, pp 313-324

Use of human reconstructed epidermis to analyze the regulation of β-defensin hBD-1, hBD-2, and hBD-3 expression in response to LPS

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Defensins have been identified as key elements of innate immunity against microbial infections. In the present study, human β-defensin-2 (hBD-2) mRNA and peptide expression were evaluated by RT-PCR and Western blotting in normal human keratinocytes, in function of their stage of differentiation. In proliferating, non-differentiating keratinocytes generated in serum-free, low-calcium medium, a very low hBD-2 mRNA expression was found. A significantly higher expression was detected in high-calcium cultivated keratinocytes grown either as monolayers or as multilayers under submerged conditions. In an air–liquid interface culture of keratinocytes, allowing epidermis to be reconstructed, hBD-2 mRNA expression level was significantly higher than in the other conditions and displayed inter-individual variability as observed in native epidermis. The peptide was detected only in reconstructed epidermis. These results indicate that hBD-2 gene expression in normal human keratinocytes is dependent upon their stage of differentiation. The level of expression of hBD-1 mRNA was lower and that of hBD-3 was higher than that of hBD-2 in reconstructed epidermis. Exposure of reconstructed epidermis to bacterial lipopolysaccharide (LPS) resulted in an average 4-fold increase in hBD-2 mRNA 18 h after challenge, but not of hBD-1 and hBD-3 gene expression. These results show the selective regulation of hBD-2-encoding gene in an organotypic epidermal model, in response to LPS. They also provide evidence thatin vitro reconstructed epidermis represents a useful model for studying regulation of expression of β-defensins after skin challenge with pathogenic microorganisms in conditions as close as possible to thein vivo situation.