, Volume 44, Issue 1, pp 189-207

Semi-Conjugate Direction Methods for Real Positive Definite Systems

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this preliminary work, left and right conjugate direction vectors are defined for nonsymmetric, nonsingular matrices A and some properties of these vectors are studied. A left conjugate direction (LCD) method for solving nonsymmetric systems of linear equations is proposed. The method has no breakdown for real positive definite systems. The method reduces to the usual conjugate gradient method when A is symmetric positive definite. A finite termination property of the semi-conjugate direction method is shown, providing a new simple proof of the finite termination property of conjugate gradient methods. The new method is well defined for all nonsingular M-matrices. Some techniques for overcoming breakdown are suggested for general nonsymmetric A. The connection between the semi-conjugate direction method and LU decomposition is established. The semi-conjugate direction method is successfully applied to solve some sample linear systems arising from linear partial differential equations, with attractive convergence rates. Some numerical experiments show the benefits of this method in comparison to well-known methods.

This revised version was published online in July 2006 with corrections to the Cover Date.