1.

Bernasconi, A. and Codenotti, B., Spectral Analysis of Boolean Functions as a Graph Eigenvalue Problem, *IEEE Trans. Comp.*, 1999, no. 48, pp. 345–351.

2.

Thornton, M.A., Miller, D.M., and Townsend, W., Chrestenson Spectrum Computation Using Cayley Color Graphs, *Int. Symp. on Multiple-Valued Logic*, 2002.

3.

Chrestenson., H.E., A Class of Generalized Walsh Functions, *Pacific J. Math.*, 1955, no. 5, pp. 17–31.

4.

Vilenkin, N.Ya., Concerning a Class of Complete Orthogonal Systems, *Dokl. Akad. Nauk SSSR, Ser. Math.*, 1947, no. 11.

5.

Babai, L., Spectra of Cayley Graphs, *J. Combinatorial Theory, Series B*, 1979, no. 27, pp. 180–189.

6.

Head, G.A., Lukoshkova, E.V., Burke, S.L., Malpas, S.C., Lambert, E.A., and Janssen, B.J.A., Comparing Spectral and Invasive Estimates of Baroreflex Gain, *IEEE Eng. Medicine Biology Magaz.*, 2001, no. 20(2), pp. 43–52.

7.

Wirth, F., Dynamics of Time-Varying Discrete-Time Linear Systems: Spectral Theory and the Projected System, *SIAM J. Control Optimiz.*, 1998, no. 36(2), pp. 447–487.

8.

Karpovsky, M.G., *Finite Orthogonal Series in the Design of Digital Devices*, New York: Wiley, 1976.

9.

Pontryagin, L.S., *Nepreryvnye Gruppy* (Continuous Groups), Moscow: Ghostehizdat, 1954.

10.

Garaev, M.U. and Faradzhev, R.G., On an Analog of Fourier Expansion over Galois Fields and Its Applications to Problems of Generalized Sequential Machines, *Izv. Akad. Nauk Azerb. SSR, Ser. Fiz.-Techn. Mat. Nauk*, 1968, no. 6, pp. 69–75.

11.

Maslen, D.K. and Rockmore, D.N., Generalized FFTs-A Survey of Some Recent Results, *DIMACS Workshop in Groups and Computation*, 1995, pp. 183–238.

12.

Ahmed, N. and Rao, K.R., *Orthogonal Transforms for Digital Signal Processing*, New York: Springer-Verlag, 1975.

13.

Dummit, D.S. and Foote, R.M., *Abstract Algebra*, Upper Saddle River: Prentice Hall, 1999.

14.

Graham, A., *Kronecker Products and Matrix Calculus with Applications*, New York: Wiley, 1981.

15.

Cooley, J.W. and Tukey, J.W., An Algorithm for the Machine Calculation of Complex Fourier Series, *Math. Computation*, 1965, no. 19, pp. 297–301.

16.

Shanks, J.L., Computation of the Fast Walsh-Fourier Transform, *IEEE Trans. Comp.*, 1969, no. 18, pp. 457–459.

17.

Mason, S.J. and Zimmermann, H.J., *Electronic Circuits, Signals, and Systems*, Massachusetts: Massachusetts Inst. Techn., 1960.

18.

Stankovi?, R.S., Sasao, T., and Moraga, C., Spectral Transforms Decision Diagrams, in *Representation of Discrete Functions*, Sasao, T. and Fujita, M., Eds., NewY ork: Kluwer, 1996.

19.

Thornton, M.A., Drechsler, R., and Miller, D.M., *Spectral Techniques in VLSI CAD*, NewYork: Kluwer, 2001.

20.

Clausen, M., Fast Generalized Fourier Transforms, *Theor. Computer Sci.*, 1989, no. 67, pp. 55–63.

21.

Maslen, D.K., The Efficient Computation of Fourier Transforms on the Symmetric Group, *Math. Comp.*, 1998, no. 67(223), pp. 1121-1147.

22.

Miller, D.M., Graph Algorithms for the Manipulation of Boolean Functions and Their Spectra, in *Congressus Numerantium*, Winnipeg: Utilitas Mathematica, 1987, pp. 177–199.

23.

Miller, D.M., Spectral Transformations of Multiple-Valued Decision Diagrams, *Int. Symp. on Multiple-Valued Logic*, 1994, pp. 89–96.

24.

Thornton, M.A. and Drechsler, R., Spectral Decision Diagrams Using Graph Transformations, *Design, Automation, and Test in Europe*, 2001, pp. 713–717.

25.

Bryant, R.E., Graph-Based Algorithms for Boolean Function Manipulation, *IEEE Trans. Comp.*, 1986, no. 35 (8), pp. 677–691.