Annals of Global Analysis and Geometry

, Volume 26, Issue 4, pp 321–332

The Geodesics of Metric Connections with Vectorial Torsion

  • Ilka Agricola
  • Christian Thier
Article

DOI: 10.1023/B:AGAG.0000047509.63818.4f

Cite this article as:
Agricola, I. & Thier, C. Annals of Global Analysis and Geometry (2004) 26: 321. doi:10.1023/B:AGAG.0000047509.63818.4f

Abstract

The present note deals with the dynamics of metric connections with vectorial torsion, as already described by E. Cartan in 1925. We show that the geodesics of metric connections with vectorial torsion defined by gradient vector fields coincide with the Levi-Civita geodesics of a conformally equivalent metric. By pullback, this yields a systematic way of constructing invariants of motion for such connections from isometries of the conformally equivalent metric, and we explain in as much this result generalizes the Mercator projection which maps sphere loxodromes to straight lines in the plane. An example shows that Beltrami's theorem fails for this class of connections. We then study the system of differential equations describing geodesics in the plane for vector fields which are not gradients, and show among others that the Hopf–Rinow theorem does also not hold in general.

metric connections vectorial torsion geodesics loxodromes geodesic mappings Mercator projection 

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ilka Agricola
    • 1
  • Christian Thier
    • 1
  1. 1.Institut für MathematikHumboldt-Universität, zu BerlinBerlinGermany