Anderson, C.H. and Langer, W.D. 1997. Statistical models of image texture. Technical Report, Washington U. Medical School. Available at ftp://shifter.wustl.edu/pub/.

Bell, A.J. and Sejnowski, T.J. 1997. The ‘independent components’ of natural scenes are edge filters.

*Vision Research*, 37(23):3327–3338.

Google ScholarBergen, J.R. and Adelson, E.H. 1986. Visual texture segmentation based on energy measures.

*J. Opt. Soc. Am. A*, 3:99.

Google ScholarBergen, J.R. and Landy, M.S. 1991. “Computational modeling of visual texture segregation: Computational models of visual processing. M.S. Landy and J.A. Morshon (Eds.). MIT Press, Cambridge, MA, pp. 253–271.

Google ScholarBouman, C.A. and Shapiro, M. 1994. A multiscale random field model for Bayesian image segmentation. *IEEE Trans. Image Proc.*, 3(2).

Bovik, A.C., Clark, M., and Geisler, W.S. 1990. Multichannel texture analysis using localized spatial filters.

*IEEE Pat. Anal. Mach. Intell.*, 12(1):55–73.

Google ScholarBovik, A.C., Clark, M., and Geisler, W.S. 1992. Localized measurements of emergent image frequencies by Gabor wavelets.

*IEEE Pat. Anal. Mach. Intell.*, 38:691–712.

Google ScholarBrodatz, P. 1996.

*Textures: A Photographic Album for Artists and Designers*. Dover: New York

Google ScholarBuccigrossi, R.W. and Simoncelli, E.P. 1999. Image compression via joint statistical characterization in the wavelet domain.

*IEEE Trans. Image Proc.*, 8(12):1688–1701.

Google ScholarCadzow, J.A., Wilkes, D.M., Peters, R.A., II, and Li, X. 1993. Image texture synthesis-by-analysis usingmoving-average models.

*IEEE Trans on Aerospace and Electrical Systems*, 29(4):1110–1122.

Google ScholarCaelli,.M. and Julesz, B. 1978. Experiments in the visual perception of texture.

*Biol. Cybernetics*, 28:167–175.

Google ScholarCano, D. and Minh, T.H. 1988. Texture synthesis using hierarchical linear transforms.

*Signal Processing*, 15:131–148.

Google ScholarChen, P.C. and Pavlidis, T. 1983. Segmentation by texture using correlation.

*IEEE Pat. Anal. Mach. Intell.*, 5(1):64–69.

Google ScholarCross, G. and Jain, A. 1983. Markov random field texture models.

*IEEE Trans. PAMI*, 5:25–39.

Google ScholarDaubechies, I. 1988. Orthonormal bases of compactly supported wavelets.

*Comm. on Pure and Appl. Math.*, 41:909–996.

Google ScholarDaugman. J.G. 1988. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression.

*IEEE Trans. Acoust. Speech Signal Proc.*, 36(7):1169–1179.

Google ScholarDaugman, J.G. 1989. Entropy reduction and decorrelation in visual coding by oriented neural receptive fields.

*IEEE Trans. Biomedical Engineering*, 36(1):107–114.

Google ScholarDaugman, J.G. and Kammen, D.M. 1986. Pure orientation filtering: A scale-invariant image-processing tool for perception research and data compression.

*Behavior Research Methods, Instruments, & Computers*, 18(6):559–564.

Google ScholarDe Bonet, J. and Viola, P. 1997. A non-parametric multi-scale statistical model for natural images. In *Adv. in Neural Info Processing*, Vol. 9. MIT Press.

Derin, H. and Elliott, H. 1987. Modeling and segmentation of noisy and textured images using Gibbs random fields.

*IEEE Pat. Anal. Mach. Intell.*, 9(1):39–55.

Google ScholarDiaconis, P. and Freedman, D. 1981. On the statistics of vision: The Julesz conjecture.

*J. Math. Psychol.*, 24:112–118.

Google ScholarEfros, A.A. and Leung, T.K. 1999. Texture synthesis by nonparameteric sampling. In *Proc. Int*'l Conference on Computer Vision, Corfu.

Faugeras, O.D. and Pratt, W.K. 1980. Decorrelation methods of texture feature extraction.

*IEEE Pat. Anal. Mach. Intell.*, 2(4):323–332.

Google ScholarField, D.J. 1987. Relations between the statistics of natural images and the response properties of cortical cells.

*J. Opt. Soc. Am. A*, 4(12):2379–2394.

Google ScholarFrancos, J.M., Meiri, A.Z., and Porat, B. 1993. A unified texture model based on a 2-DWold-like decomposition.

*IEEE Trans. Signal Proc.*, 41(8):2665–2678.

Google ScholarGagalowicz, A. 1981. A new method for texture fields synthesis: Some applications to the study of human vision.

*IEEE Pat. Anal. Mach. Intell.*, 3(5):520–533.

Google ScholarGeman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.

*IEEE Pat. Anal. Mach. Intell.*, 6:721–741.

Google ScholarGraham, N. 1989.

*Visual Pattern Analyzers*. Oxford University Press: New York.

Google ScholarHassner, M. and Sklansky, J. 1980. The use of Markov random fields as models of texture.

*Comp. Graphics Image Proc.*, 12:357–370.

Google ScholarHeeger, D. and Bergen, J. 1995. Pyramid-based texture analysis/synthesis. In *Proc. ACM SIGGRAPH*.

Hertzmann, A. 1998. Painterly rendering with curved brush strokes of multiple sizes. In *Proc. ACM SigGraph*, pp. 453–460.

Hirani, A.N. and Totsuka, T. 1996. Combining frequency and spatial domain information for fast interactive image noise removal. In *ACM SIGGRAPH*, pp. 269–276.

Jaynes, E.T. 1957. Information theory and statistical mechanics.

*Phys. Rev.*, 106:620–630.

Google ScholarJaynes, E.T. 1978. Where do we stand on maximum entropy? In

*The Maximal Entropy Formalism*, R.D. Levine and M. Tribus (Eds.). MIT Press: Cambridge, MA.

Google ScholarJulesz, B. 1962. Visual pattern discrimination.

*IRE Trans. Info Theory*, IT-8:84–92.

Google ScholarJulesz, B. 1981. Textons, the elements of texture perception and their interactions.

*Nature*, 290:91–97.

Google ScholarJulesz, B., Gilbert, E.N., Shepp, L.A., and Frisch, H.L. 1973. Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited.

*Perception*, 2:391–405.

Google ScholarJulesz, B., Gilbert, E.N., and Victor, J.D. 1978. Visual discrimination of textures with identical third-order statistics.

*Biol. Cybernetics*, 31:137–140.

Google ScholarKersten, D. 1987. Predictability and redundancy of natural images.

*J. Opt. Soc. Am. A*, 4(12):2395–2400.

Google ScholarKnutsson, H. and Granlund, G.H. 1983. Texture analysis using twodimensional quadrature filters. In *Workshop on Computer Architecture for Pattern Analysis and Image Database Management*, IEEE Computer Society, pp. 206–213.

Malik, J. and Perona, J. 1990. Preattentive texture discrimination with early vision mechanisms.

*J. Opt. Soc. Am. A*, 7:923–932.

Google ScholarMallat, S.G. 1989. A theory for multiresolution signal decomposition: The wavelet representation.

*IEEE Pat. Anal. Mach. Intell.*, 11:674–693.

Google ScholarManduchi, R. and Portilla, J. 1999. Independent component analysis of textures. In *Proc. Int*'l Conference on Computer Vision, Corfu.

Olshausen, B.A. and Field, D.J. 1996. Natural image statistics and efficient coding.

*Network: Computation in Neural Systems*, 7:333–339.

Google ScholarPerona, P. and Malik, J. 1990. Detecting and localizing edges composed of steps, peaks and roofs. In *Proc. 3rd Intl. Conf. Computer Vision*, Osaka, Japan.

Popat, K. and Picard, R.W. 1993. Novel cluster-based probability model for texture synthesis, classification, and compression. In *Proc. SPIE Vis Comm.*, Cambridge, MA.

Popat, K. and Picard, R.W. 1997. Cluster-based probability model and its application to image and texture processing.

*IEEE Trans. Im. Proc.*, 6(2):268–284.

Google ScholarPorat, M. and Zeevi, Y.Y. 1989. Localized texture processing in vision: Analysis and synthesis in Gaborian space.

*IEEE Trans. Biomedical Eng.*, 36(1):115–129.

Google ScholarPortilla, J., Navarro, R., Nestares, O., and Tabernero, A. 1996. Texture synthesis-by-analysis based on a multiscale early-vision model.

*Optical Engineering*, 35(8):2403–2417.

Google ScholarPortilla, J. and Simoncelli, E. 1999. Texture modeling and synthesis using joint statistics of complex wavelet coefficients. In *IEEE Workshop on Statistical and Computational Theories of Vision*, Fort Collins, CO. Available at http://www.cis.ohiostate.edu/~szhu/SCTV99.html.

Portilla, J. and Simoncelli, E. 2000. Image denoising via adjustment ofwavelet coefficient magnitude correlation. In *Seventh IEEE Int*'l Conf. on Image Proc., Vancouver, September 10– 13. IEEE Computer Society.

Pratt, W.K., Faugeras, O.D., and Gagolowicz, A. 1978. Visual discrimination of stochastic texture fields.

*IEEE Trans. on Systems Man and Cybernetics*, 8:796–804.

Google ScholarReed, T.R. and Wechsler, H. 1990. Segmentation of textured images and Gestalt organization using spatial/spatial-frequency representations.

*IEEE Pat. Anal. Mach. Intell.*, 12(1):1–12.

Google ScholarRuderman, D.L. and Bialek, W. 1994. Statistics of natural images: Scaling in the woods.

*Phys. Rev. Letters*, 73(6):814–817.

Google ScholarSimoncelli, E.P. 1997. Statistical models for images: Compression, restoration and synthesis. In *31st Asilomar Conf. on Signals, Systems and Computers*, Pacific Grove, CA, November 1997. IEEE Computer Society, pp. 673–678.

Simoncelli, E.P. and Freeman, W.T. 1995. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In

*Second Int*'l Conf. on Image Proc., Washington, DC, October 1995. Vol. III, IEEE Sig. Proc. Society, pp. 444–447.

Google ScholarSimoncelli, E.P., Freeman, W.T., Adelson, E.H., and Heeger, D.J. 1992. Shiftable multi-scale transforms.

*IEEE Trans Information Theory*, 38(2):587–607. Special Issue on Wavelets.

Google ScholarSimoncelli, E. and Portilla, J. 1998. Texture characterization via joint statistics of wavelet coefficient magnitudes. In *Fifth IEEE Int*'l Conf. on Image Proc., Chicago, October 4– 7, Vol. I. IEEE Computer Society.

Tabernero, A., Portilla, J., and Navarro, R. 1999. Duality of logpolar image representations in the space and the spatial-frequency domains.

*IEEE Trans. on Signal Processing*, 47(9):2469–2479.

Google ScholarTurner, M.R. 1986. Texture discrimination by Gabor functions.

*Biol. Cybern.*, 55:71–82.

Google ScholarVictor, J.D. 1994. Images, statistics and textures: Implications of triple correlation uniqueness for texture statistics and the Julesz conjecture: Comment.

*J. Opt. Soc. Am. A*, 11(5):1680–1684.

Google ScholarVisTex: An online collection of visual textures. MIT Media Laboratory, 1995. Available from http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.

Wainwright, M.J. and Simoncelli, E.P. 2000. Scale mixtures of Gaussians and the statistics of natural images. In

*Adv. Neural Information Processing Systems*, Vol. 12, S.A. Solla, T.K. Leen, and K.-R. Müller (Eds.). MIT Press: Cambridge, MA, pp. 855–861. Presented at Neural Information Processing Systems, Dec. 1999.

Google ScholarWatson, A.B. 1987. Efficiency of a model human image code.

*J. Opt. Soc. Am. A*, 12:2401–2417.

Google ScholarYellott, J.I. 1993. Images, statistics and textures: Implications of triple correlation uniqueness for texture statistics and the Julesz conjecture.

*J. Opt. Soc. Am. A*, 10(5):777–793.

Google ScholarYoula, D.C. 1978. Generalized image restoration by the method of alternating orthogonal projections.

*IEEE Trans. Circuits and Systems*, 25:694–702.

Google ScholarYoula, D.C. and Webb, H. 1982. Image restoration by the method of convex projections.

*IEEE Trans. Med. Imaging*, 1:81–101.

Google ScholarZetzsche, C., Wegmann, B., and Bart, E. 1993. Nonlinear aspects of primary vision: Entropy reduction beyond decorrelation. In

*Int'l Symposium, Society for Information Display*, Vol. XXIV, pp. 933–936.

Google ScholarZhu, S.C., Liu, X., and Wu, Y.N. 1999. Exploring the Julesz ensemble by efficient Markov chain Monte Carlo. In *IEEEWorkshop on Statistical and Computational Theories of Vision*, Fort Collins, CO. Available at http://www.cls.ohio-state.edu/~szhu/SCTV99.html.

Zhu, S., Wu, Y.N., and Mumford, D. 1996. Filters, random fields and maximum entropy (FRAME)—Towards the unified theory for texture modeling. In *IEEE Conf. Computer Vision and Pattern Recognition*, 693–696.

Zhu, S.C., Wu, Y.N., and Mumford, D. 1997. Minimax entropy principle and its application to texture modeling. In

*Neural Computation*, Vol. 9, pp. 1627–1660.

Google Scholar