Skip to main content
Log in

Growth Of The Summer Daytime Convective Boundary Layer At Anand

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The heights of the daytime convective boundary layer (CBL), computed by a one-dimensional model for a bare soil surface at a semi-arid station,Anand, during the dry and hot summer month of May 1997, are presented. As input, the model requires surface heat flux, friction velocity and air temperature as functions of time. Temperature data at the one-metre level from a tower and sonic anemometer data at 9.5 m collected during the period 13–17 May 1997 in the Land Surface Processes Experiment (LASPEX-97) are used to compute hourly values of surface heat flux, friction velocity and Obukhov length following the operational method suggested by Holtslag and Van Ulden [J. Climate Appl. Meteorol. 22,517–529 (1983)]. The model has been tested with different values for the potential temperature gradient (γ θ) above the inversion. The model-estimated CBL heights comparefavourably with observed heights obtained from radiosonde ascents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abu Bakr, E. H.: 1988, The Boundary Layer Wind Regime of a Representative Tropical Region, Central Sudan, Scientific Report W.R. 88–4, KNMI, De Bilt, The Netherlands, 154 pp.

    Google Scholar 

  • Batchvarova, E. and Gryning, S. E.: 1991, ‘Applied Model for the Growth of the Daytime Mixed Layer’, Boundary-Layer Meteorol. 56, 261–274.

    Google Scholar 

  • Betts, A. K.: 1994, ‘Relation between Equilibrium Evaporation and the Saturation Pressure Budget’, Boundary-Layer Meteorol. 71, 235–245.

    Google Scholar 

  • Betts, A. K. and Albrecht, B. A.: 1987, ‘Conserved Variable Analysis of the Convective Boundary Layer Thermodynamic Structure over the Tropical Oceans’, J. Atmos. Sci. 44, 83–99.

    Google Scholar 

  • Beyrich, F.: 1995, ‘Mixing Height Estimation in the Convective Boundary Layer Using Sodar Data’, Boundary-Layer Meteorol. 74, 1–18.

    Google Scholar 

  • Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., Seibert, P. and Tercier, P.: 1996, ‘On the Determination ofMixing Height: A Review’, in Proceedings of the 4th Workshop on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 6–9 May 1996, Oostende, Belgium, pp. 155–162.

  • Carson, D. J.: 1973, ‘The Development of a Dry Inversion-Capped Convectively Unstable Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 99, 450–467.

    Google Scholar 

  • Chakraborty, P. and Padmanabhmurty, B.: 1995, ‘Some Surface Layer Parameters during Onset and Midmonsoon Phases of MONTBLEX-90 at Jodhpur’, Vayumandal 25, 33–40.

    Google Scholar 

  • Chen, C. and Cotton, W. R.: 1983, ‘A One-Dimensional Simulation of the Stratocumulus-Capped Mixed Layer’, Boundary-Layer Meteorol. 25, 289–321.

    Google Scholar 

  • Deardorff, J. W.: 1974, ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Deardorff, J. W.: 1979, ‘Prediction of Convective Mixed Layer Entrainment for Realistic Capping Inversion Structure’, J. Atmos. Sci. 36, 424–436.

    Google Scholar 

  • Driedonks, A. G. M.: 1981, Dynamics of the Well-Mixed Atmospheric Boundary Layer, Scientific Report W.R. 81–2, KNMI, De Bilt, The Netherlands, 189 pp.

    Google Scholar 

  • Driedonks, A. G. M.: 1982, ‘Models and Observations of the Growth of the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 23, 283–306.

    Google Scholar 

  • Eastman, J. L., Pielke, R. A., and McDonald, D. J.: 1998, ‘Calibration of Soil Moisture for Large-Eddy Simulations over FIFE Area’, J. Atmos. Sci. 55, 1131–1140.

    Google Scholar 

  • Galinski, A. E. and Thomson, D. J.: 1995, ‘Comparison of Three Schemes for Predicting Surface Sensible Heat Flux’, Boundary-Layer Meteorol. 72, 345–370.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge, University Press, U.K., 316 pp.

    Google Scholar 

  • Holtslag, A. A. M. and Van Ulden, A. P.: 1983, ‘A Simple Scheme for Daytime Estimates of the Surface Fluxes from Routine Weather Data’, J. Clim. Appl. Meteorol. 22, 517–529.

    Google Scholar 

  • Holzworth, G. C.: 1967, ‘Mixing Depths, Wind Speeds and Air Pollution Potential for Selected Locations in the Unites States’, J. Appl. Meteorol. 6, 1039–1044.

    Google Scholar 

  • Kaimal, J. C., Wyngarrd, J. C., Haugen, D. A., Cote, O. R., Izumi, Y., Caughy, S. J. and Reedings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Kantha, L. H., Phillips, O. M., and Azad, R. S.: 1977, ‘On Turbulent Entrainment at a Stable Density Interface’, J. Fluid Mech. 79, 753–768.

    Google Scholar 

  • Kato, H. and Philips, O. M.: 1969, ‘On the Penetration of Turbulent Layer into Stratified Fluid’, J. Fluid Mech. 37, 643–655.

    Google Scholar 

  • Kim, C. P. and Entekhabi, D.: 1998, ‘Feedbacks in the Land-Surface and Mixed-Layer Energy Budgets’, Boundary-Layer Meteorol. 88, 1–21.

    Google Scholar 

  • Marsik, F. J., Fischer, K. W., McDonald, T. D., and Samson, P. J.: 1995, ‘Comparison of Methods for EstimatingMixing Heights Used during the 1992 Atlantic Field Intensive’, J. Appl. Meteorol. 34, 1802–1814.

    Google Scholar 

  • Martano, P. and Romanelli, A.: 1997, ‘A Routine for the Calculation of the Time-Dependent Height of the Atmospheric Boundary Layer from Surface-Layer Parameters’, Boundary-Layer Meteorol. 82, 105–117.

    Google Scholar 

  • Novak, M. D.: 1991, ‘Application of a Mixed-Layer Model to Bare Soil Surfaces’, Boundary-Layer Meteorol. 56, 141–161.

    Google Scholar 

  • Pringer, M., Baumann, K., and Langer, M.: 1998, ‘Summertime Mixing Heights at Vienna, Austria, Estimated from Vertical Soundings and by a Numerical Model’, Boundary-Layer Meteorol. 89, 25–45.

    Google Scholar 

  • Silva Dias, M. A. F. and Machado, A. J.: 1997, ‘The Role of Local Ciculations in Summertime Convective Development and Nocturnal Fog in Sao Paulo, Brazil’, Boundary-Layer Meteorol. 82, 135–157.

    Google Scholar 

  • Sommeria, G.: 1976, ‘Three-Dimensional Simulation of Turbulent Processes in an Undisturbed Trade Wind Boundary Layer’, J. Atmos. Sci. 33, 216–241.

    Google Scholar 

  • Sorbjan, Z.: 1995, ‘Toward Evaluation of Heat Fluxes in the Convective Boundary Layer’, J. Appl. Meteorol. 34, 1092–1098.

    Google Scholar 

  • Stull, R. B.: 1976, ‘The Energetics of Entrainment across a Density Interface’, J. Atmos. Sci. 33, 1260–1267.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, Boston, London, 666 pp.

    Google Scholar 

  • Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above a Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.

    Google Scholar 

  • Van Dop, H., De Haan, B. J., and Engeldal, C. A.: 1982, The KNMI Mesoscale Air Pollution Model, Scientific Report W.R. 82–6, KNMI, De Bilt, The Netherlands, 76 pp.

    Google Scholar 

  • Van Ulden, A. P. and Wieringa, J.: 1996, ‘Atmospheric Boundary Layer Research at Cabauw’, Boundary-Layer Meteorol. 78, 39–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagar, S.G., Tyagi, A., Seetaramayya, P. et al. Growth Of The Summer Daytime Convective Boundary Layer At Anand. Boundary-Layer Meteorology 98, 297–314 (2001). https://doi.org/10.1023/A:1026551006586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026551006586

Navigation