Journal of Dynamics and Differential Equations

, Volume 12, Issue 3, pp 449–510

Center Manifolds for Homoclinic Solutions

  • Björn Sandstede

DOI: 10.1023/A:1026412926537

Cite this article as:
Sandstede, B. Journal of Dynamics and Differential Equations (2000) 12: 449. doi:10.1023/A:1026412926537


In this article, center-manifold theory is developed for homoclinic solutions of ordinary differential equations or semilinear parabolic equations. A center manifold along a homoclinic solution is a locally invariant manifold containing all solutions which stay close to the homoclinic orbit in phase space for all times. Therefore, as usual, the low-dimensional center manifold contains the interesting recurrent dynamics near the homoclinic orbit, and a considerable reduction of dimension is achieved. The manifold is of class C1, β for some β>0. As an application, results of Shilnikov about the occurrence of complicated dynamics near homoclinic solutions approaching saddle-foci equilibria are generalized to semilinear parabolic equations.

homoclinic orbits center manifolds Shilnikov bifurcation 

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Björn Sandstede
    • 1
  1. 1.Department of MathematicsOhio State UniversityColumbus