Skip to main content
Log in

Superfluidity in the Solar Interior: Implications for Solar Eruptions and Climate

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Efforts to understand unusual weather or abrupt changes in climate have been plagued by deficiencies of the standard solar model (SSM) [1]. Although it assumes that our primary source of energy began as a homogeneous ball of hydrogen (H) with a steady, well-behaved H-fusion reactor at its core, observations instead reveal a very heterogeneous, dynamic Sun. As examples, the upward acceleration and departure of H+ ions from the surface of the quiet Sun and abrupt climatic changes, including geomagnetic reversals and periodic magnetic storms that eject material from the solar surface are not explained by the SSM. The present magnetic fields are probably deep-seated remnants of very ancient origin. These could have been generated from two mechanisms. These are (1) Bose-Einstein condensation [2] of iron-rich, zero-spin material into a rotating, superfluid, superconductor surrounding the solar core and/or (2) superfluidity and quantized vortices in nucleon-paired Fermions at the core [3].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Manuel and S. Friberg, in Proceedings of 2002 SOHO 12/GONG2002, Local and Global Helioseismology: The Present and Future (Huguette Lacoste, ed., ESA SP-517 SOHO/ GONG, Noordwijk, The Netherlands (2003) pp. 345–348.

  2. B. W. Ninham, Physics Lett. 4, 278–279 (1963).

    Google Scholar 

  3. P. M. Pizzochero, L. Viverit, and R. A. Brogalia, Physical Rev. Lett. 79, 3347–3350 (1997).

    Google Scholar 

  4. D. L. Landau and E. M. Lifschifz, Statistical Physics, translated from Russian by J. B. Sykes and M. J. Kearsley (2nd revised and enlarged edition, Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

  5. W. Baade and F. Zwicky Proc. Natl. Acad. Sci. 20, 259–263 (1934).

    Google Scholar 

  6. J. R. Oppenheimer and G. M. Volkoff, Physics Rev. 15, 374–381 (1939).

    Google Scholar 

  7. O. K. Manuel and D. D. Sabu, Science 195, 208–209 (1977).

    Google Scholar 

  8. R. V. Ballad, et al., Nature 277, 615–620 (1979).

    Google Scholar 

  9. D. D. Sabu and O. K. Manuel, Meteoritics 15, 117–138 (1980).

    Google Scholar 

  10. O. K. Manuel and G. Hwaung, Meteoritics 18, 209–222 (1983).

    Google Scholar 

  11. O. Manuel, in Origin of Elements in the Solar System: Implications of Post-1957 Observations (Proceedings of the 1999 ACS symposium organized by Glenn T. Seaborg and Oliver K. Manuel. O. Manuel, ed., Kluwer/Plenum Publishers, New York, NY, 2000) pp. 279–287.

    Google Scholar 

  12. O. Manuel, et al., J. Fusion Energy 19, 93–98 (2000).

    Google Scholar 

  13. O. Manuel, E. Miller, and A. Katragada J. Fusion Energy 20, 197–201 (2001).

    Google Scholar 

  14. O. Manuel, et al., The Sun's Origin, Composition and Source of Energy, 32nd Lunar and Planetary Science Conference, abstract 1041, Houston, TX, March 12-16, 2001, LPI Contribution 1080, ISSN No. 0161-5297 (2001).

  15. O. Manuel, “The Standard Solar Model Versus Experimental Observations” BEYOND '2002, Third International Conference on Physics Beyond the Standard Model-Accelerator, Non-Accelerator and Space Approaches in the New Millenium. Oulu, Finland (H. V. Klapdor-Kleingrothaus, ed., IOP, Bristol, England) pp. 307–316.

    Google Scholar 

  16. T. Landscheidt, “Long-Range Forecast of U.S. Drought Based on Solar Activity” http://www.john-daly.com/solar/US-drought.htm (2003).

  17. J. M. Herndon EOS Trans. Am. Geophys. Union 79, 451, 456 (1998).

    Google Scholar 

  18. D. F. Hollenbach and J. M. Herndon, Proc. Natl. Acad. Sci. 98, 11085–11090 (2001).

    Google Scholar 

  19. V. Bothmer, et al., Solar Syst. Res. 36, 499–506 (2002); translated from Astronomicheskii Vestnik 36, 539-547 (2002).

    Google Scholar 

  20. P. Thejll, B. Christiansen, and H. Gleisner, Geophys. Res. Lett. 30, 1347–1367 (2003).

    Google Scholar 

  21. T. Landscheidt, Solar Physics 189, 415–426 (1999).

    Google Scholar 

  22. M. J. Thompson, et al., Science 272, 1300–1305 (1996).

    Google Scholar 

  23. M. Neugebauer, E. Smith, A. Ruzmaikin, J. Feynman, and A. Vaughn J. Geophys. Res. 105, 2314–2324 (2000).

    Google Scholar 

  24. T. Corbard “The Solar Tachocline,” paper presented at the SOHO 12 /GONG — 2002 Meeting, Big Bear Lake, CA, October 27-November 1, 2002. See slide 21, image 20 http:// www. obs-nice.fr/corbard/BB_HTML/img20.html.

  25. This quote from Dr. Marcia Neugebauer is in the eighth paragraph of a JPL news release on February 1, 2000, “The Sun's Magnetic Field Has a Good Memory,” at http://www. appliedmeditation.org/ The_Heart/cosmic_sun.html.

  26. A. Dar and G. Shaviv, Ap. J. 468, 933–946 (1996). Assumptions of the standard solar model are given on p. 935.

    Google Scholar 

  27. O. K. Manuel and D. D. Sabu, Trans. Missouri Acad. Sci. 9, 104–122 (1975).

    Google Scholar 

  28. O. K. Manuel, Am. Scientist 85, 478–479 (1997).

    Google Scholar 

  29. A. Ruzmaikin and C. Lindsey, “Helioseismic probing of the solar dynamo flows,” in Proceedings of 2002 SOHO 12/GONG 2002, Local and Global Helioseismology: The Present and Future (H. Lacoste, ed., ESA SP-517 SOHO/GONG, Noordwijk, The Netherlands, 2003) pp. 71–75.

    Google Scholar 

  30. D. H. Hathaway, “Large-scale flows through the solar cycle, ” in Proceedings of 2002 SOHO 12/GONG 2002, Local and Global Helioseismology: The Present and Future (H. Lacoste, ed., ESA SP-517 SOHO/GONG, Noordwijk, The Netherlands, 2003) pp. 87–96.

    Google Scholar 

  31. J. Toomere, “Overview: Where do we stand with helioseismology,” in Proceedings of 2002 SOHO 12/GONG 2002, Local and Global Helioseismology: The Present and Future (Huguette Lacoste, ed., ESA SP-517 SOHO/GONG, Noordwijk, The Netherlands, 2003) pp. 3–14.

    Google Scholar 

  32. E. Zinner Science 300, 265–267 (2003).

    Google Scholar 

  33. P. K. Kuroda and W. A. Myers, Radiochim. Acta 77, 15–20 (1991).

    Google Scholar 

  34. S. Tachibana and G. R. Huss, Lunar and Planet. Sci. XXXIV, Abstract 1737 (2003).

    Google Scholar 

  35. T. Gold, Nature 218, 731–732 (1968).

    Google Scholar 

  36. T. Gold, Nature 221, 25–27 (1969).

    Google Scholar 

  37. R. Howe, et al., Science 287, 2456–2460 (2000).

    Google Scholar 

  38. R. Davis, Jr., D. S. Harmer, and K. C. Hoffman Physics Rev. Lett. 20, 1205–1209 (1968).

    Google Scholar 

  39. J. Geiss, in Origin and Evolution of the Elements (N. Prantoz, E. Vangioni-Flam, and M. Casse, eds., Cambridge University Press, Cambridge 1993) pp. 89–106.

    Google Scholar 

  40. A. Nolte and C. Lietz, in Origin of Elements in the Solar System: Implications of Post-1957 Observations (Proceedings of the 1999 ACS symposium organized by GlennT. Seaborg and Oliver K. Manuel; O. Manuel, ed., Kluwer/Plenum Publishers, New York, NY, 2000) pp. 529–543.

    Google Scholar 

  41. P. Toth, Nature 270, 159–160 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manuel, O.K., Ninham, B.W. & Friberg, S.E. Superfluidity in the Solar Interior: Implications for Solar Eruptions and Climate. Journal of Fusion Energy 21, 193–198 (2002). https://doi.org/10.1023/A:1026250731672

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026250731672

Navigation