Skip to main content
Log in

II: SOLID EARTH PHYSICS: Long Wavelength Sea Level and Solid Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Rapid ice mass variations within the large polar ice sheets lead to distinct and highly non-uniform sea-level changes that have come to be known as ‘sea-level fingerprints’. We explore in detail the physics of these fingerprints by decomposing the total sea-level change into contributions from radial perturbations in the two bounding surfaces: the geoid (or sea surface) and the solid surface. In the case of a melting event, the sea-level fingerprint is characterized by a sea-level fall in the near-field of the ice complex and a gradually increasing sea-level rise (from 0.0 to 1.3 times the eustatic value) as one considers sites at progressively greater distances (up to ≈ 90° or so) from the ice sheet. The far-field redistribution is largely driven by the relaxation of the sea-surface as the gravitational pull of the ablating ice sheet weakens. The near-field sea-level fall is a consequence of both this relaxation and ocean-plus-ice unloading of the solid surface. We argue that the fingerprints provide a natural explanation for geographic variations in sea-level (e.g., tide gauge, satellite) observations. Therefore, they furnish a methodology for extending traditional analyses of these observations to estimate not only the globally averaged sea-level rate but also the individual contributions to this rate (i.e., the sources).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cabanes, C., A. Cazenave, and C. Le Provost: 2001, ‘Sea level rise during past 40 years determined from satellite and in situ observations’. Science, 294, 840-842.

    Article  ADS  Google Scholar 

  • Clark, J. A. and J. A. Primus: 1987, ‘Sea-level changes resulting from future retreat of ice sheets: an effect of CO2 warming of the climate’. In: M. J. Tooley and I. Shennan (eds.): Sea-Level Changes. Institute of British Geographers, London, United Kingdom, pp. 356-370.

    Google Scholar 

  • Conrad, C., and B. H. Hager: 1997, ‘Spatial variations in the rate of sea level rise caused by present-day melting of glaciers and ice sheets’. Geophys. Res. Lett., 24, 1503-1506.

    Article  ADS  Google Scholar 

  • Davis, J. L., and J. X. Mitrovica: 1996, ‘Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America’. Nature, 379, 331-333.

    Article  ADS  Google Scholar 

  • Douglas, B. C.: 1991, ‘Global sea level rise’. J. Geophys. Res., 96, 6981-6992.

    ADS  Google Scholar 

  • Douglas, B. C.: 1992, ‘Global sea level acceleration’. J. Geophys. Res., 97, 12699-12706.

    ADS  Google Scholar 

  • Douglas, B. C.: 1997, ‘Global sea level rise: A redetermination’. Surv. Geophys., 18, 279-292.

    Article  ADS  Google Scholar 

  • Dziewonski, A. M., and D. L. Anderson: 1981, ‘Preliminary reference Earth model (PREM)’. Phys. Earth Planet. Inter., 25, 297-356.

    Article  ADS  Google Scholar 

  • Farrell, W. E., and J. T. Clark: 1976, ‘On postglacial sea level’. Geophys. J. R. astr. Soc., 46, 647-667.

    Google Scholar 

  • Gornitz, V.: 1995, ‘Sea level rise: A review of recent past and near-future trends’. Earth Surface Processes and Landforms, 20, 7-20.

    Google Scholar 

  • Gregory, J. M., and J. A. Lowe: 2000. ‘Predictions of global and regional sea-level rise using AOGCMs with and without flux adjustment’. Geophys. Res. Lett., 27, 3069-3072.

    Article  ADS  Google Scholar 

  • Intergovernmental Panel on Climate Change: 2001, Climate Change 2001: The Scientific Basis, The Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Lambeck, K, C. Smither, and P. Johnston: 1998, ‘Sea-level change, glacial rebound and mantle viscosity for northern Europe’. Geophys. J. Int., 134, 102-144.

    Article  ADS  Google Scholar 

  • Levitus, S., J.L. Antonov, T.P. Boyer, and C. Stephen: 2000, ‘Warming of the global ocean’. Science, 287, 2225-2229.

    Article  ADS  Google Scholar 

  • Meier, M. F.: 1984, ‘Contribution of small glaciers to global sea level’. Science, 226, 1418-1421.

    ADS  Google Scholar 

  • Milne, G. A.: 1998, ‘Refining models of the glacial isostatic adjustment process’. Ph. D. thesis, University of Toronto, Toronto.

    Google Scholar 

  • Milne, G. A., J. X. Mitrovica, and J. L. Davis: 1999, ‘Near-field hydro-isostasy: The implementation of a revised sea-level equation’. Geophys. J. Int., 139, 464-482.

    Article  ADS  Google Scholar 

  • Mitrovica, J. X., and J. L. Davis: 1995, ‘Present-day post-glacial sea level change far from the Late Pleistocene ice sheets: Implications for recent analyses of tide gauge records’. Geophys. Res. Lett., 22, 2529-2532.

    Article  ADS  Google Scholar 

  • Mitrovica, J. X., and W. R. Peltier: 1991, ‘On postglacial geoid subsidence over the equatorial oceans’. J. Geophys. Res., 96, 20053-20071.

    ADS  Google Scholar 

  • Mitrovica, J. X., M. Tamisiea, J. L. Davis, and G. A. Milne: 2001, ‘Polar ice mass variations and the geometry of global sea level change’. Nature, 409, 1026-1029.

    Article  ADS  Google Scholar 

  • Munk, W.: 2002, ‘Twentieth century sea level: An enigma’. Proc. Nat. Acad. Sci., 99, 6550-6555.

    Article  ADS  Google Scholar 

  • Nakiboglu, S. M., and K. Lambeck: 1991, ‘Secular sea-level change’. In: R. Sabadini, K. Lambeck and E. Boschi (eds.): Glacial Isostasy, Sea-Level and Mantle Rheology, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 237-258.

    Google Scholar 

  • Nerem, R. S: 1995, ‘Global mean sea level variations from TOPEX/POSEIDON altimeter data’. Science, 268, 708-710.

    ADS  Google Scholar 

  • Peltier, W. R., and A. M. Tushingham: 1989, ‘Global sea level rise and the greenhouse effect: Might they be connected?’. Science, 244, 806-810.

    ADS  Google Scholar 

  • Peltier, W. R., and A. M. Tushingham: 1991, ‘Influence of glacial isostatic adjustment on tide gauge measurements of secular sea level change’. J. Geophys. Res., 96, 6779-6796.

    Article  ADS  Google Scholar 

  • Plag, H.-P., and H.-U. Jüttner: 2001, ‘Inversion of global tide gauge data for present-day ice load changes’. In: Proceedings of the Second International Symposium on Environmental Research in the Arctic and Fifth Ny-Alesund Scientific Seminar, Mem. Nat. Inst. Polar Res. Vol. 54, pp. 301-318.

    Google Scholar 

  • Shennan, I., and P. L. Woodworth: 1992, ‘A comparison of late Holocene and twentieth-century sea level trends from the UK and North Sea region’. Geophys. J. Int., 109, 96-105.

    ADS  Google Scholar 

  • Tamisiea, M., J. X. Mitrovica, G. A. Milne, and J. L. Davis: 2001, ‘Global geoid and sea level changes due to present-day ice mass fluctuations’. J. Geophys. Res., 106, 30849-30863.

    Article  ADS  Google Scholar 

  • Trupin, A. S., and J. M. Wahr: 1990, ‘Spectroscopic analysis of global tide gauge sea level data’. Geophys. J. Int., 100, 441-453.

    ADS  Google Scholar 

  • Woodward, R. S.: 1888, ‘On the form and position of mean sea level’, United States Geol. Survey Bull., 48, 87-170.

    Google Scholar 

  • Woodworth, P. L.: 1990, ‘A search for accelerations in records of European mean sea level’. Int. J. Climatology, 10, 129-143.

    ADS  Google Scholar 

  • Woodworth, P. L., M. N. Tsimplis, R. A. Flather and I. Shennan: 1999, ‘A review of the trends observed in British Isles mean sea level data measured by tide gauges’. Geophys. J. Int., 136, 651-670.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamtsiea, M.E., Mitrovica, J.X., Davis, J.L. et al. II: SOLID EARTH PHYSICS: Long Wavelength Sea Level and Solid Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux. Space Science Reviews 108, 81–93 (2003). https://doi.org/10.1023/A:1026178014950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026178014950

Keywords

Navigation