, Volume 255, Issue 1, pp 105-119

Conservation and divergence of signalling pathways between roots and soil microbes – the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This review compares endophytic symbiotic and pathogenic root–microbe interactions and examines how the development of root structures elicited by various micro-organisms could have evolved by recruitment of existing plant developmental pathways. Plants are exposed to a multitude of soil micro-organisms which affect root development and performance. Their interactions can be of symbiotic and pathogenic nature, both of which can result in the formation of new root structures – how does the plant regulate the different outcomes of interactions with microbes? The idea that pathways activated in plant by micro-organisms could have been `hijacked' from plant developmental pathways is not new, it was essentially proposed by P. S. Nutman in 1948, but at that time, the molecular evidence to support that hypothesis was missing. Genetic evidence for overlaps between different plant–microbe interactions have previously been examined. This review compares the physiological and molecular plant responses to symbiotic rhizobia with those to arbuscular mycorrhizal fungi, pathogenic nematodes and the development of lateral roots and summarises evidence from both molecular and cellular studies for substantial overlaps in the signalling pathways underlying root–micro-organism interactions. A more difficult question has been why plant responses to micro-organisms are so similar, even though the outcomes are very different. Possible hypotheses for divergence of signalling pathways and future approaches to test these ideas are presented.