Geometriae Dedicata

, Volume 100, Issue 1, pp 123–155

Gromov's Centralizer Theorem

Authors

  • A. Candel
    • Department of MathematicsCSUN
  • R. Quiroga-Barranco
    • Departamento de MatemáticasCINVESTAV-IPN
Article

DOI: 10.1023/A:1025892501271

Cite this article as:
Candel, A. & Quiroga-Barranco, R. Geometriae Dedicata (2003) 100: 123. doi:10.1023/A:1025892501271

Abstract

We study the properties of rigid geometric structures and their relation with those of finite type. The main result proves that for a noncompact simple Lie group G acting analytically on a manifold M preserving a finite volume and either a connection or a geometric structure of finite type there is a nontrivial space of globally defined Killing vector fields on the universal cover \(\tilde M\) that centralize the action of G. Several appplications of this result are provided.

simple Lie groupsfinite type structuresanalytic actions
Download to read the full article text

Copyright information

© Kluwer Academic Publishers 2003