1.

Bollobás, B.: *Graph Theory - An Introductory Course*, Springer-Verlag, Berlin, 1985.

2.

Bondy, J. A. and Murty, U. S. R.: *Graph Theory with Its Applications*, Macmillan, New York, 1976.

3.

Brooks, R.: A relation between growth and the spectrum of the Laplacian, *Math. Z.*
**178** (1981), 501–508.

4.

Dodziuk, J. and Karp, L.: Spectral and function theory for combinatorial Laplacians, *Contemp. Math.*
**b73** (1988), 25–40.

5.

Dodziuk, J. and Kendall, W. S.: Combinatorial Laplacians and isoperimetric inequality, in: K. D. Elworthy (ed.), *From Local Times to Global Geometry, Control and Physics*, Pitman Res. Notes Math. Ser. 150, Longman, Harlow, 1986, pp. 68–74.

6.

Fujiwara, K.: Growth and the spectrum of the Laplacian on an infinite graph, *Tôhoku Math. J.*
**48** (1996), 293–302.

7.

Fujiwara, K.: Laplacians on rapidly branching trees, *Duke Math. J.*
**83** (1996), 192–202.

8.

Higuchi, Yu.: A remark on exponential growth and the spectrum of the Laplacian, *Kodai Math. J.*
**24** (2001), 42–47.

9.

Kesten, H.: Symmetric random walks on groups, *Trans. Amer. Math. Soc.*
**92** (1959), 336–354.

10.

Lyons, T.: A simple criterion for transience of a reversible Markov chain, *Ann. Probab.*
**11** (1983), 393–402.

11.

Nash-Williams, C. St. J. A.: Random walks and electric currents in networks, *Proc. Cambridge Philos. Soc.*
**55** (1959), 181–194.

12.

Sunada, T.: private communication.