[1]

J. Abate and W. Whitt, Transient behavior of regulated Brownian motion, I: Starting at the origin, Adv. in Appl. Probab. 19 (1987) 560–598.

[2]

J. Abate and W. Whitt, Transient behavior of regulated Brownian motion, II: Non-zero initial conditions, Adv. in Appl. Probab. 19 (1987) 599–631.

[3]

S. Asmussen, Extreme value theory for queues via cycle maxima, Extremes 1(2) (1998) 137–168.

[4]

A. Berger and W. Whitt, Maximum values in queueing processes, Probab. Engrg. Inform. Sci. 9 (1995) 375–409.

[5]

A. Borovkov, *Asymptotic Methods in Queueing Theory* (Wiley, New York, 1984).

[6]

S. Browne and W. Whitt, Piecewise-linear diffusion processes, in: *Advances in Queueing: Theory, Methods, and Open Problems*, ed. J. Dshalalow (CRC Press, Boca Raton, FL, 1995) pp. 463–480.

[7]

E. Coffman, A. Puhalskii, M. Reiman and P. Wright, Processor-shared buffers with reneging, Performance Evaluation 19 (1994) 25–46.

[8]

P.W. Glynn and D. Iglehart, Trading securities using trailing stops, Managm. Sci. 41 (1995) 1096– 1106.

[9]

J.M. Harrison, *Brownian Motion and Stochastic Flow Systems* (Wiley, New York, 1985).

[10]

I. Karatzas and S.E. Shreve, *Brownian Motion and Stochastic Calculus* (Springer, New York, 1991).

[11]

S. Karlin and H. Taylor, *A Second Course in Stochastic Processes* (Academic Press, New York, 1976).

[12]

J. Keilson, A limit theorem for passage times in ergodic regenerative processes, Ann. Math. Statist. 37 (1966) 866–870.

[13]

T. Lindvall, On coupling of diffusion processes, J. Appl. Probab. 20 (1983) 82–93.

[14]

T. Lindvall, Lectures on the coupling method, in: *Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics* (Wiley, New York, 1992).

[15]

P. Lions and A. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984) 511–537.

[16]

H. Rootzen, Maxima and exceedances of stationary Markov chains, Adv. in Appl. Probab. 20 (1989) 371–390.

[17]

S. Ross, *Stochastic Processes* (Wiley, New York, 1996).

[18]

R. Serfozo, Extreme values of birth and death processes and queues, Stochastic Process. Appl. 27 (1988) 291–306.

[19]

R. Srikant and W. Whitt, Simulation run lengths to estimate blocking probabilities, ACMTrans.Modeling Comput. Simulation 6 (1996) 7–52.

[20]

A. Ward and P. Glynn, A diffusion approximation for a GI*/*G*/*1 queue with reneging, Working paper (2002).

[21]

A. Ward and P. Glynn, A diffusion approximation for a Markovian queue with reneging, under review (2002).