, Volume 118, Issue 2, pp 233–244

Origin and Evolution of a New Gene Expressed in the Drosophila Sperm Axoneme


  • José María Ranz
    • Department of Organismic and Evolutionary BiologyHarvard University
  • Ana Rita Ponce
    • Department of Organismic and Evolutionary BiologyHarvard University
    • Department of Organismic and Evolutionary BiologyHarvard University
  • Dmitry Nurminsky
    • Department of Anatomy and Cell BiologyTufts University School of Medicine

DOI: 10.1023/A:1024186516554

Cite this article as:
Ranz, J.M., Ponce, A.R., Hartl, D.L. et al. Genetica (2003) 118: 233. doi:10.1023/A:1024186516554


Sdic is a new gene that evolved recently in the lineage of Drosophila melanogaster. It was formed from a duplication and fusion of the gene AnnX, which encodes annexin X, and Cdic, which encodes the intermediate polypeptide chain of the cytoplasmic dynein. The fusion joins AnnX exon 4 with Cdic intron 3, which brings together three putative promoter elements for testes- specific expression of Sdic: the distal conserved element (DCE) and testes-specific element (TSE) are derived from AnnX, and the proximal conserved element (PCE) from Cdic intron 3. Sdic transcription initiates within the PCE, and translation is initiated within the sequence derived from Cdic intron 3, continuing through a 10 base pair insertion that creates a new splice donor site that enables the new coding sequence derived from intron 3 to be joined with the coding sequence of Cdic exon 4. A novel protein is created lacking 100 residues at the amino end that contain sequence motifs essential for the function of cytoplasmic dynein intermediate chains. Instead, the amino end is a hydrophobic region of 16 residues that resembles the amino end of axonemal dynein intermediate chains from other organisms. The downstream portion of Sdic features large deletions eliminating Cdic exons v2 and v3, as well as multiple frameshift deletions or insertions. The new protein becomes incorporated into the tail of the mature sperm and may function as an axonemal dynein intermediate chain. The new Sdic gene is present in about 10 tandem repeats between the wildtype Cdic and AnnX genes located near the base of the X chromosome. The implications of these findings are discussed relative to the origin of new gene functions and the process of speciation.

axonemedynein intermediate chainexon shufflegene fusionspermatogenesis
Download to read the full article text

Copyright information

© Kluwer Academic Publishers 2003