A novel acrylic copolymer for a poly(alkenoate) glass-ionomer cement

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The interest in the clinical use of polyalkenoate cements stems mainly from their behavior as bioactive adhesive materials with therapeutic action. Glass-ionomer cements set by an acid-base reaction between a degradable glass and a poly(alkenoic acid) and the therapeutic action is related to the release of fluoride ions which are present in the hardened cement that show a sustained release over years, responsible for caries inhibition in teeth. Conventional glass-ionomers, however, suffer from some disadvantages such as short working time, initial moisture sensitivity and prone to desiccation after setting and are generally brittle. In the present study, a poly(alkenoic acid) copolymer was synthesized based on acrylic acid and 2-hydroxyethylmethacrylate (HEMA) using azobisisobutyronitrile as the initiator and characterized. The acid–base reaction was carried out by reacting aqueous solutions of the new copolymer (40 and 60%) with a commercial aluminofluorosilicate glasses as used in conventional glass-ionomer cements. The results showed that the copolymer of HEMA and acrylic acid was a viable poly(alkenoic) acid for formation of glass-ionomer cements.