Computational Economics

, Volume 21, Issue 3, pp 257-276

First online:

Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series

  • Catherine KyrtsouAffiliated withDepartment of Applied Economics, Lameta, Espace Richter, University of Montpellier I
  • , Michel TerrazaAffiliated withDepartment of Applied Economics, Lameta, Espace Richter, University of Montpellier I

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Most recent empirical works that apply sophisticated statistical proceduressuch as a correlation-dimension method have shown that stock returns arehighly complex. The estimated correlation dimension is high and there islittle evidence of low-dimensional deterministic chaos. Taking the complexbehaviour in stock markets into account, we think it is more robust than thetraditional stochastic approach to model the observed data by a nonlinearchaotic model disturbed by dynamic noise. In fact, we construct a model havingnegligible or even zero autocorrelations in the conditional mean, but a richstructure in the conditional variance. The model is a noisy Mackey–Glassequation with errors that follow a GARCH(p,q) process. This model permits usto capture volatility-clustering phenomena. Its characteristic is thatvolatility clustering is interpreted as an endogenous phenomenon. The mainobjective of this article is the identification of the underlying process ofthe Paris Stock Exchange returns series CAC40. To this end, we apply severaldifferent tests to detect longmemory components and chaotic structures.Forecasting results for the CAC40 returns series, will conclude this paper.

Mackey–Glass equation noisy chaos volatility clustering correlation dimension Lyapunov exponents GARCH effects forecasting