1.

N. A. Vavilov, “Geometry of long root subgroups in Chevalley groups," *Vestn. Leningr. Univ., Mat.*, **21**, No. 1, 5-10 (1988).

2.

N. A. Vavilov, “Mutual arrangement of long and short root subgroups in a Chevalley group," *Vestn. Leningr. Univ., Mat.*, **22**, No. 1, 1-7 (1989).

3.

N. A. Vavilov, “Subgroups of Chevalley groups containing a maximal torus," *Trudy Leningr. Mat. Soc.*, **1**, 64-109 (1990).

4.

A. S. Kondrat'ev, “Subgroups of finite Chevalley groups," *Usp. Mat. Nauk*, **41**, No. 1, 57-96 (1986).

5.

V. V. Nesterov, “Pairs of short root subgroups in a Chevalley group," *Dokl. Ross. Akad. Nauk*, **357**, 302-305 (1997).

6.

R. Steinberg, Lectures on Chevalley Groups, Yale University (1967).

7.

M. Aschbacher and G. M. Seitz, “Involutions in Chevalley groups over fields of even order," *Nagoya Math. J.*, **63**, 1-91 (1976).

8.

R. W. Carter, Simple Groups of Lie Type, Wiley, London (1972).

9.

B. N. Cooperstein, “The geometry of root subgroups in exceptional groups," *Geometria Dedicata*, **8**, No.3, 317-381 (1979).

10.

B. N. Cooperstein, “Geometry of long root subgroups in groups of Lie type," *Proc. Symp. Pure Math.*, **37**, 243-248 (1980).

11.

B. N. Cooperstein, “Maximal subgroups of G2(2 n )," *J. Algebra*, **37**, No. 1, 23-36 (1981).

12.

J. Hurrelbrink and U. Rehmann, “Eine endliche Präsentation der Gruppe G2( Z )," *Math. Z.*, **141**, 243-251 (1975).

13.

W. M. Kantor, “Subgroups of classical groups generated by long root elements," *Trans. Am.er Math. Soc.*, **248**, No. 2, 347-379 (1979).

14.

W. M. Kantor, “Generation of linear groups," in: *The Geometrical Vein: Coxeter Festschift*, Springer-Verlag, Berlin (1981), pp. 497-509.

15.

Li Shang Zhi, “Maximal subgroups containing short root subgroups in PSp(2n; F )," *Acta Math. Sinica, New Ser.*, **3**, No. 1, 82-91 (1987).

16.

B. S. Stark, “Some subgroups of (V ) generated by groups of root type," *J. Algebra*, **17**, No. [sn1], 33-41 (1974).

17.

B. S. Stark, “Irreducible subgroups of orthogonal groups generated by groups of root type 1," *Pacific J. Math.*, **53**, No. 2, 611-625 (1974).

18.

F. G. Timmesfeld, “Groups generated by k-root subgroups,” *Invent. Math.*, **106**, 575-666 (1991).