1.

M. Sh. Birman and T. A. Suslina, Two-dimensional periodic magnetic Hamiltonian is absolutely continuous,"*Algebra Analiz*, **9**, No. 1, 32–48(1997).

2.

M. Sh. Birman and T. A. Suslina, Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential," *Algebra Analiz*, **10**, No. 4, 1–36(1998).

3.

M. Sh. Birman and T. A. Suslina, Periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity," *Algebra Analiz*, **11**, No. 2, 1–40(1999).

4.

M. Sh. Birman, R. G. Shterenberg, and T. A. Suslina, Absolute continuity of the spectrum of a two-dimensional Schr¨ odinger operator with potential supported on a periodic system of curves," *Algebra Analiz*,**12**, No.6, 140–177(2000).

5.

H. Cycon, R. Froese, W. Kirsch, and B. Simon, *Schr¨ odinger Operators with Applications to Quantum Mechanics and Global Geometry*, Springer-Verlag, New York (1966).

6.

T. Kato, *Perturbation Theory for Linear Operators*, Springer-Verlag, New York (1966).

7.

P. Kuchment and S. Levendorskii, On the structure of spectra of periodic elliptic operators," Preprint mp _ arc 00–388 (2000), http://www.ma.utexas.edu/mp _ arc.

8.

A. Morame, Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electromagnetic potential," *J. Phys. A: Math. Gen.*, **31**, 7593–7601(1998).

9.

M. Reed and B. Simon, *Methods of Modern Mathematical Physics*, Vol. IV, Academic Press, New York–London (1978).

10.

Z. Shen, Absolute continuity of periodic Schr¨ odinger operators with potentials in the Kato class," Preprint 00-294 in mp_arc (2000).

11.

A. V. Sobolev, Absolute continuity of the periodic magnetic Schr¨ odinger operator," *Invent. Math.*, **137(1)**, 85–112(1999).

12.

V. A. Solonnikov and N. N. Uraltseva, The Sobolev spaces," in: *Selected Chapters in Analysis and Algebra* [in Russian], Izd. Leningr. Univ. (1981), pp. 129–197.

13.

T. Suslina, Absolute continuity of the spectrum of periodic operators of mathematical physics," in: *Journees Équations aux Dérivées Partielles, Nantes* (2000).

14.

L. Thomas, Time dependent approach to scattering from impurities in a crystal," *Comm. Math. Phys.*, **33**, 335–343(1973).

15.

I. N. Vekua, *Generalized Analytic Functions*, Pergamon Press, London–Paris–Frankfurt (1962).